114 research outputs found
Observation of Coherently Coupled Cation Spin Dynamics in an Insulating Ferrimagnetic Oxide
Many technologically useful magnetic oxides are ferrimagnetic insulators,
which consist of chemically distinct cations. Here, we examine the spin
dynamics of different magnetic cations in ferrimagnetic NiZnAl-ferrite
(NiZnAlFeO) under continuous microwave
excitation. Specifically, we employ time-resolved x-ray ferromagnetic resonance
to separately probe Fe and Ni cations on different sublattice
sites. Our results show that the precessing cation moments retain a rigid,
collinear configuration to within 2. Moreover, the effective
spin relaxation is identical to within 10% for all magnetic cations in the
ferrite. We thus validate the oft-assumed ``ferromagnetic-like'' dynamics in
resonantly driven ferrimagnetic oxides, where the magnetic moments from
different cations precess as a coherent, collective magnetization
Discovery of the First in Vivo Active Inhibitors of the Soluble Epoxide Hydrolase Phosphatase Domain
The emerging pharmacological target soluble epoxide hydrolase (sEH) is a bifunctional enzyme exhibiting two different catalytic activities that are located in two distinct domains. Although the physiological role of the C-terminal hydrolase domain is well-investigated, little is known about its phosphatase activity, located in the N-terminal phosphatase domain of sEH (sEH-P). Herein we report the discovery and optimization of the first inhibitor of human and rat sEH-P that is applicable in vivo. X-ray structure analysis of the sEH phosphatase domain complexed with an inhibitor provides insights in the molecular basis of small-molecule sEH-P inhibition and helps to rationalize the structure-activity relationships. 4-(4-(3,4-Dichlorophenyl)-5-phenyloxazol-2-yl)butanoic acid (22b, SWE101) has an excellent pharmacokinetic and pharmacodynamic profile in rats and enables the investigation of the physiological and pathophysiological role of sEH-P in vivo
A New Type of Proton Coordination in an F1Fo-ATP Synthase Rotor Ring
The high-resolution structure of the rotor ring from alkaliphilic Bacillus pseudofirmus OF4 reveals a new type of ion binding in F1Fo-ATP synthases
Probing the Interaction of the Diarylquinoline TMC207 with Its Target Mycobacterial ATP Synthase
Infections with Mycobacterium tuberculosis are substantially increasing on a worldwide scale and new antibiotics are urgently needed to combat concomitantly emerging drug-resistant mycobacterial strains. The diarylquinoline TMC207 is a highly promising drug candidate for treatment of tuberculosis. This compound kills M. tuberculosis by binding to a new target, mycobacterial ATP synthase. In this study we used biochemical assays and binding studies to characterize the interaction between TMC207 and ATP synthase. We show that TMC207 acts independent of the proton motive force and does not compete with protons for a common binding site. The drug is active on mycobacterial ATP synthesis at neutral and acidic pH with no significant change in affinity between pH 5.25 and pH 7.5, indicating that the protonated form of TMC207 is the active drug entity. The interaction of TMC207 with ATP synthase can be explained by a one-site binding mechanism, the drug molecule thus binds to a defined binding site on ATP synthase. TMC207 affinity for its target decreases with increasing ionic strength, suggesting that electrostatic forces play a significant role in drug binding. Our results are consistent with previous docking studies and provide experimental support for a predicted function of TMC207 in mimicking key residues in the proton transfer chain and blocking rotary movement of subunit c during catalysis. Furthermore, the high affinity of TMC207 at low proton motive force and low pH values may in part explain the exceptional ability of this compound to efficiently kill mycobacteria in different microenvironments
Highly Divergent Mitochondrial ATP Synthase Complexes in Tetrahymena thermophila
Tetrahymena ATP synthase, an evolutionarily divergent protein complex, has a very unusual structure and protein composition including a unique Fo subunit a and at least 13 proteins with no orthologs outside of the ciliate lineage
Eukaryotic G protein-coupled receptors as descendants of prokaryotic sodium-translocating rhodopsins
Genomics of alkaliphiles
Alkalinicity presents a challenge for life due to a “reversed” proton gradient that is unfavourable to many bioenergetic processes across the membranes of microorganisms. Despite this, many bacteria, archaea, and eukaryotes, collectively termed alkaliphiles, are adapted to life in alkaline ecosystems and are of great scientific and biotechnological interest due to their niche specialization and ability to produce highly stable enzymes. Advances in next-generation sequencing technologies have propelled not only the genomic characterization of many alkaliphilic microorganisms that have been isolated from nature alkaline sources but also our understanding of the functional relationships between different taxa in microbial communities living in these ecosystems. In this review, we discuss the genetics and molecular biology of alkaliphiles from an “omics” point of view, focusing on how metagenomics and transcriptomics have contributed to our understanding of these extremophiles.https://link.springer.com/bookseries/10hj2021BiochemistryGeneticsMicrobiology and Plant Patholog
- …
