5,587 research outputs found

    MPS solidification model. Analysis and calculation of macrosegregation in a casting ingot

    Get PDF
    Work performed on several existing solidification models for which computer codes and documentation were developed is presented. The models describe the solidification of alloys in which there is a time varying zone of coexisting solid and liquid phases; i.e., the S/L zone. The primary purpose of the models is to calculate macrosegregation in a casting or ingot which results from flow of interdendritic liquid in this S/L zone during solidification. The flow, driven by solidification contractions and by gravity acting on density gradients in the interdendritic liquid, is modeled as flow through a porous medium. In Model 1, the steady state model, the heat flow characteristics are those of steady state solidification; i.e., the S/L zone is of constant width and it moves at a constant velocity relative to the mold. In Model 2, the unsteady state model, the width and rate of movement of the S/L zone are allowed to vary with time as it moves through the ingot. Each of these models exists in two versions. Models 1 and 2 are applicable to binary alloys; models 1M and 2M are applicable to multicomponent alloys

    Analysis and calculation of macrosegregation in a casting ingot. MPS solidification model. Volume 1: Formulation and analysis

    Get PDF
    The physical and numerical formulation of a model for the horizontal solidification of a binary alloy is described. It can be applied in an ingot. The major purpose of the model is to calculate macrosegregation in a casting ingot which results from flow of interdendritic liquid during solidification. The flow, driven by solidification contractions and by gravity acting on density gradients in the interdendritic liquid, was modeled as flow through a porous medium. The symbols used are defined. The physical formulation of the problem leading to a set of equations which can be used to obtain: (1) the pressure field; (2) the velocity field: (3) mass flow and (4) solute flow in the solid plus liquid zone during solidification is presented. With these established, the model calculates macrosegregation after solidification is complete. The numerical techniques used to obtain solution on a computational grid are presented. Results, evaluation of the results, and recommendations for future development of the model are given. The macrosegregation and flow field predictions for tin-lead, aluminum-copper, and tin-bismuth alloys are included as well as comparisons of some of the predictions with published predictions or with empirical data

    Quantum Hall effect in exfoliated graphene affected by charged impurities: metrological measurements

    Full text link
    Metrological investigations of the quantum Hall effect (QHE) completed by transport measurements at low magnetic field are carried out in a-few-μm\mu\mathrm{m}-wide Hall bars made of monolayer (ML) or bilayer (BL) exfoliated graphene transferred on Si/SiO2\textrm{Si/SiO}_{2} substrate. From the charge carrier density dependence of the conductivity and from the measurement of the quantum corrections at low magnetic field, we deduce that transport properties in these devices are mainly governed by the Coulomb interaction of carriers with a large concentration of charged impurities. In the QHE regime, at high magnetic field and low temperature (T<1.3KT<1.3 \textrm{K}), the Hall resistance is measured by comparison with a GaAs based quantum resistance standard using a cryogenic current comparator. In the low dissipation limit, it is found quantized within 5 parts in 10710^{7} (one standard deviation, 1σ1 \sigma) at the expected rational fractions of the von Klitzing constant, respectively RK/2R_{\mathrm{K}}/2 and RK/4R_{\mathrm{K}}/4 in the ML and BL devices. These results constitute the most accurate QHE quantization tests to date in monolayer and bilayer exfoliated graphene. It turns out that a main limitation to the quantization accuracy, which is found well above the 10910^{-9} accuracy usually achieved in GaAs, is the low value of the QHE breakdown current being no more than 1μA1 \mu\mathrm{A}. The current dependence of the longitudinal conductivity investigated in the BL Hall bar shows that dissipation occurs through quasi-elastic inter-Landau level scattering, assisted by large local electric fields. We propose that charged impurities are responsible for an enhancement of such inter-Landau level transition rate and cause small breakdown currents.Comment: 14 pages, 9 figure

    Practical quantum realization of the ampere from the electron charge

    Full text link
    One major change of the future revision of the International System of Units (SI) is a new definition of the ampere based on the elementary charge \emph{e}. Replacing the former definition based on Amp\`ere's force law will allow one to fully benefit from quantum physics to realize the ampere. However, a quantum realization of the ampere from \emph{e}, accurate to within 10810^{-8} in relative value and fulfilling traceability needs, is still missing despite many efforts have been spent for the development of single-electron tunneling devices. Starting again with Ohm's law, applied here in a quantum circuit combining the quantum Hall resistance and Josephson voltage standards with a superconducting cryogenic amplifier, we report on a practical and universal programmable quantum current generator. We demonstrate that currents generated in the milliampere range are quantized in terms of efJef_\mathrm{J} (fJf_\mathrm{J} is the Josephson frequency) with a measurement uncertainty of 10810^{-8}. This new quantum current source, able to deliver such accurate currents down to the microampere range, can greatly improve the current measurement traceability, as demonstrated with the calibrations of digital ammeters. Beyond, it opens the way to further developments in metrology and in fundamental physics, such as a quantum multimeter or new accurate comparisons to single electron pumps.Comment: 15 pages, 4 figure

    The role of gravity on macrosegregation in alloys

    Get PDF
    During dendritic solidification liquid flow is induced both by buoyancy forces and solidification shrinkage. There is strong evidence that the major reason for the liquid flow is the former, i.e., thermosolutal convection. In the microgravity environment, it is thought that the thermosolutal convection will be greatly diminished so that convection will be confined mainly to the flow of interdendritic liquid required to satisfy the solidification shrinkage. An attempt is made to provide improved models of dendritic solidification with emphasis on convection and macrosegregation. Macrosegregation is an extremely important subject to the commercial casting community. The simulation of thermosolutal convection in directionally solidified (DS) alloys is described. A linear stability analysis was used to predict marginal stability curves for a system that comprises a mushy zone underlying an all-liquid zone. The supercritical thermosolutal convection in directionally solidified dendritic alloys was also modeled. The model assumes a nonconvective initial state with planar and horizontal isotherms and isoconcentration that move upward at a constant solidification velocity. Results are presented for systems involving lead-tin alloys and show significant differences with results of plane-front solidification

    Computer simulation of macrosegregation in directionally solidified circular ingots

    Get PDF
    The formulation and employment of a computer code designed to simulate the directional solidification of lead-rich Pb-Sn alloys in the form of an ingot with a uniform and circular cross-section are described. The formulation is for steady-state solidification in which convection in the all-liquid zone is ignored. Particular attention was given to designing a code to simulate the effect of a subtle variation of temperature in the radial direction. This is important because a very small temperature difference between the center and the surface of the ingot (e.g., less than 0.5 C ) is enough to cause substantial convection within the mushy-zone when the solidification rate is approximately 0.001 to 0.0001 cm/s

    The kinetics of homogeneous melting beyond the limit of superheating

    Get PDF
    Molecular dynamics simulation is used to study the time-scales involved in the homogeneous melting of a superheated crystal. The interaction model used is an embedded-atom model for Fe developed in previous work, and the melting process is simulated in the microcanonical (N,V,E)(N, V, E) ensemble. We study periodically repeated systems containing from 96 to 7776 atoms, and the initial system is always the perfect crystal without free surfaces or other defects. For each chosen total energy EE and number of atoms NN, we perform several hundred statistically independent simulations, with each simulation lasting for between 500 ps and 10 ns, in order to gather statistics for the waiting time τw\tau_{\rm w} before melting occurs. We find that the probability distribution of τw\tau_{\rm w} is roughly exponential, and that the mean value <τw><\tau_{\rm w} > depends strongly on the excess of the initial steady temperature of the crystal above the superheating limit identified by other researchers. The mean also depends strongly on system size in a way that we have quantified. For very small systems of 100\sim 100 atoms, we observe a persistent alternation between the solid and liquid states, and we explain why this happens. Our results allow us to draw conclusions about the reliability of the recently proposed Z method for determining the melting properties of simulated materials, and to suggest ways of correcting for the errors of the method.Comment: 19 pages, 8 figure

    Elastic Study of Antiferromagnetic Fluctuations in the Layered Organic Superconductors kappa-(BEDT-TTF)_2X

    Full text link
    In an ultrasonic experiment, we have investigated the temperature profile of the velocity of longitudinal elastic waves propagating along a direction perpendicular to the layers in the organic superconductors kappa-(BEDT-TTF)_2X, X = Cu(SCN)_2 and Cu[N(CN)_2]Br. Although a small decrease of the velocity is observed at the superconducting transition, the most anomalous behavior is obtained in the normal metallic state where an important softening is identified around 40-50 K. In order to characterize the origin of this anomaly, we have studied its behavior under the application of hydrostatic pressure. The observed behavior is found to mimic those of the transport and magnetic properties of these materials which have been attributed to the magnetic fluctuations. Following the example of one-dimensional insulating systems where coupling between longitudinal acoustic waves and magnetic fluctuations is known to occur, our results suggest that the pseudo-gap regime of these two-dimensional organic superconductors is dominated by a similar mechanism.Comment: 4 pages including 4 figure
    corecore