3,451 research outputs found

    Fate of mercury in tree litter during decomposition

    Get PDF
    We performed a controlled laboratory litter incubation study to assess changes in dry mass, carbon (C) mass and concentration, mercury (Hg) mass and concentration, and stoichiometric relations between elements during decomposition. Twenty-five surface litter samples each, collected from four forest stands, were placed in incubation jars open to the atmosphere, and were harvested sequentially at 0, 3, 6, 12, and 18 months. Using a mass balance approach, we observed significant mass losses of Hg during decomposition (5 to 23 % of initial mass after 18 months), which we attribute to gaseous losses of Hg to the atmosphere through a gas-permeable filter covering incubation jars. Percentage mass losses of Hg generally were less than observed dry mass and C mass losses (48 to 63 % Hg loss per unit dry mass loss), although one litter type showed similar losses. A field control study using the same litter types exposed at the original collection locations for one year showed that field litter samples were enriched in Hg concentrations by 8 to 64 % compared to samples incubated for the same time period in the laboratory, indicating strong additional sorption of Hg in the field likely from atmospheric deposition. Solubility of Hg, assessed by exposure of litter to water upon harvest, was very low (<0.22 ng Hg g<sup>−1</sup> dry mass) and decreased with increasing stage of decomposition for all litter types. Our results indicate potentially large gaseous emissions, or re-emissions, of Hg originally associated with plant litter upon decomposition. Results also suggest that Hg accumulation in litter and surface layers in the field is driven mainly by additional sorption of Hg, with minor contributions from "internal" accumulation due to preferential loss of C over Hg. Litter types showed highly species-specific differences in Hg levels during decomposition suggesting that emissions, retention, and sorption of Hg are dependent on litter type

    The role of CD44 and ERM proteins in expression and functionality of P-glycoprotein in breast cancer cells

    Full text link
    © 2016 by the authors. Multidrug resistance (MDR) is often attributed to the over-expression of P-glycoprotein (P-gp), which prevents the accumulation of anticancer drugs within cells by virtue of its active drug efflux capacity. We have previously described the intercellular transfer of P-gp via extracellular vesicles (EVs) and proposed the involvement of a unique protein complex in regulating this process. In this paper, we investigate the role of these mediators in the regulation of P-gp functionality and hence the acquisition of MDR following cell to cell transfer. By sequentially silencing the FERM domain-binding proteins, Ezrin, Radixin and Moesin (ERM), as well as CD44, which we also report a selective packaging in breast cancer derived EVs, we have established a role for these proteins, in particular Radixin and CD44, in influencing the P-gp-mediated MDR in whole cells. We also report for the first time the role of ERM proteins in the vesicular transfer of functional P-gp. Specifically, we demonstrate that intercellular membrane insertion is dependent on Ezrin and Moesin, whilst P-gp functionality is governed by the integrity of all ERM proteins in the recipient cell. This study identifies these candidate proteins as potential new therapeutic targets in circumventing MDR clinically

    A novel method to detect translation of membrane proteins following microvesicle intercellular transfer of nucleic acids

    Full text link
    © 2016 The Authors. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved. Microvesicles (MVs) serve as vectors of nucleic-acid dissemination and are important mediators of intercellular communication. However, the functionality of packaged nucleic acids on recipient cells following transfer of MV cargo has not been clearly elucidated. This limitation is attributed to a lack of methodology available in assessing protein translation following homotypic intercellular transfer of nucleic acids. Using surface peptide shaving we have demonstrated that MVs derived from human leukaemic cells transfer functional P-glycoprotein transcripts, conferring drug-efflux capacity to recipient cells. We demonstrate expression of newly synthesized protein using Western blot. Furthermore, we show functionality of translated P-gp protein in recipient cells using Calcein-AM dye exclusion assays on flow cytometry. Newly synthesized 170 kDa P-gp was detected in recipient cells after coculture with shaven MVs and these proteins were functional, conferring drug efflux. This is the first demonstration of functionality of transferred nucleic acids between human homotypic cells as well as the translation of the cancer multidrug-resistance protein in recipient cells following intercellular transfer of its transcript. This study supports the significant role of MV's in the transfer of deleterious traits in cancer populations and describes a new paradigm in mechanisms governing the acquisition of traits in cancer cell populations

    Spin ordering and electronic texture in the bilayer iridate Sr3_3Ir2_2O7_7

    Full text link
    Through a neutron scattering, charge transport, and magnetization study, the correlated ground state in the bilayer iridium oxide Sr3_3Ir2_2O7_7 is explored. Our combined results resolve scattering consistent with a high temperature magnetic phase that persists above 600 K, reorients at the previously defined TAF=280T_{AF}=280 K, and coexists with an electronic ground state whose phase behavior suggests the formation of a fluctuating charge or orbital phase that freezes below T70T^{*}\approx70 K. Our study provides a window into the emergence of multiple electronic order parameters near the boundary of the metal to insulator phase transition of the 5d Jeff=1/2J_{eff}=1/2 Mott phase.Comment: Revised text and figures. 4 pages, 4 figure

    Proteome analysis of multidrug-resistant, breast cancer-derived microparticles

    Full text link
    © 2014 Deep Pokharel et al. Cancer multidrug resistance (MDR) occurswhen cancer cells evade the cytotoxic actions of chemotherapeutics through the active efflux of drugs from within the cells. Our group have previously demonstrated that multidrug-resistant breast cancer cells spontaneously shed microparticles (MPs) and that these MPs can transfer resistance to drug-responsive cells and confer MDR on those cells in as little as 4 h. Furthermore, we also showed that, unlike MPs derived from leukaemia cells, breast cancer-derived MPs display a tissue selectivity in the transfer of P-glycoprotein (P-gp), transferring the resistance protein only to malignant breast cells. This study aims to define the proteome of breast cancer-derived MPs in order to understand the differences in protein profiles between those shed from drug-resistant versus drug-sensitive breast cancer cells. In doing so, we detail the protein cargo required for the intercellular transfer of MDR to drug-sensitive recipient cells and the factors governing the transfer selectivity to malignant breast cells. We describe the first proteomic analysis of MPs derived from human breast cancer cells using SDS PAGE and liquid chromatography-tandem mass spectrometry (LC/MS/MS), in which we identify 120 unique proteins found only in drug-resistant, breast cancer-derived MPs. Our results demonstrate that the MP-mediated transfer of P-gp to recipient cells occurs alongside CD44; the Ezrin, Radixin and Moesin protein family (ERM); and cytoskeleton motor proteins within the MP cargo

    ‘Agents-in-focus’ and ‘Agents-in-context’: The strong structuration analysis of central government accounting practices and reforms in Nepal

    Get PDF
    Drawing on Stones’ (2005) strong structuration theory, the paper unfolds why and how the key stakeholders of central government accounting in Nepal are involved in the reproduction of routinised accounting practices, resisting the externally-propagated changes. Government accountants (the agents-in-focus) through their capability to control the budget routines have enjoyed a powerful social position in their position–practice relations with the agents-in-context, i.e. professional accountants and international consultants, higher-level officers and administrators, auditors, and politicians. Social position along with historically-imbued dispositions and their conduct and context analysis have enabled government accountants to strategically exercise their agency. Government accountants have articulated duality and a dialectic relation with the agents-in-context, which have resulted in the reproduction of everyday accounting practice and the resistance to the World Bank-led reforms, such as accrual accounting and, more recently, the Cash-Basis IPSAS

    Middle mountains forests of Nepal

    Get PDF
    Publication no. 3201
    corecore