25 research outputs found
Lessons learned from the microbial ecology resulting from different inoculation strategies for biogas production from waste products of the bioethanol/sugar industry
BACKGROUND: During strategic planning of a biogas plant, the local availability of resources for start-up and operation should be taken into consideration for a cost-efficient process. Because most bioethanol/sugar industries in Brazil are located in remote areas, the use of fresh cattle manure from local farms could be a solution for the inoculation of the biogas process. This study investigated the diversity and dynamics of bacterial and archaeal communities and the performance of biogas reactors inoculated with manure and a mixed inoculum from different biogas reactors as for a controlled start-up until steady state. RESULTS: Laboratory-scale biogas reactors were fed semi-continuously with sugarcane filter cake alone (mono-digestion) or together with bagasse (co-digestion). At the initial start-up, the reactors inoculated with the mixed inoculum displayed a less diverse taxonomic composition, but with higher presence of significant abundances compared to reactors inoculated with manure. However, in the final steady state, the communities of the differently inoculated reactors were very similarly characterized by predominance of the methanogenic genera Methanosarcina and Methanobacterium, the bacterial families Bacteroidaceae, Prevotellaceae and Porphyromonadaceae (phylum Bacteroidetes) and Synergistaceae (phylum Synergistetes). In the mono-digestion reactors, the methanogenic communities varied greater than in the co-digestion reactors independently of the inoculation strategy. CONCLUSION: The microbial communities involved in the biogas production from waste products of the Brazilian bioethanol/sugar industry were relatively similar and stable at the reactor’s steady phase independently of the inoculum source (manure or mixed inoculum). Therefore, the locally available manure can be used as inoculum for start-up of the biogas process, since it also contains the microbial resources needed. The strong fluctuation of methanogenic communities in mono-digestion reactors indicates higher risk of process instability than in co-digestion reactors. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13068-016-0548-4) contains supplementary material, which is available to authorized users
Genomics and metagenomics of trimethylamine-utilizing Archaea in the human gut microbiome
International audienceThe biological significance of Archaea in the human gut microbiota is largely unclear. We recently reported genomic and biochemical analyses of the Methanomassiliicoccales, a novel order of methanogenic Archaea dwelling in soil and the animal digestive tract. We now show that these Methanomassiliicoccales are present in published microbiome data sets from eight countries. They are represented by five Operational Taxonomic Units present in at least four cohorts and phylogenetically distributed into two clades. Genes for utilizing trimethylamine (TMA), a bacterial precursor to an atherosclerogenic human metabolite, were present in four of the six novel Methanomassiliicoccales genomes assembled from ELDERMET metagenomes. In addition to increased microbiota TMA production capacity in long-term residential care subjects, abundance of TMA-utilizing Methanomassiliicoccales correlated positively with bacterial gene count for TMA production and negatively with fecal TMA concentrations. The two large Methanomassiliicoccales clades have opposite correlations with host health status in the ELDERMET cohort and putative distinct genomic signatures for gut adaptation
A mesophilic anaerobic digester for treating food waste: process stability and microbial community analysis using pyrosequencing
Age dependent breath methane in the German population
Methane which can sometimes be found in exhaled breath of humans is known to reflect in situ intestinal methanogenic activity. In recent years, several factors have been studied in order to understand their relevance to methane production in the intestinal tract. However, the relationship between age and methane producing status has hitherto not been sufficiently investigated. In the present study we evaluated the relationship between age and percentage of breath methane producers in the German population in 428 subjects with ages ranging from 4 to 95 years. When subjects were divided into age groups of 15 years, an increase in the percentage of breath methane producers with age was observed. The near linear increase (R-2 = 0.977) from 5% for children (1-15 years) to 57% for the elderly (> 75 years) may indicate a continuous development in the human gut methanogenic flora throughout lifetime. However, when subjects were compared on 5 year age intervals, an interruption in the percentage of methane producers in the sixth and seventh decade was noted. We further revealed an age dependence on the ratio of female to male producers. This is shown by a dominance in female breath methane producers during the first half of life which afterwards is replaced by a dominance in male breath methane producers with an approximately linear decrease in the ratio between 20 and 65 years (R-2 = 0.926). These observations might suggest a relationship between methanogenic activity and hormonal factors. Using our data, we predict that the percentage of breath CH4 producers within the German population will increase from its current value of 30% (2013) to 35% by 2050. (C) 2014 Elsevier B.V. All rights reserved
Evidence of anaerobic syntrophic acetate oxidation in biogas batch reactors by analysis of <sup>13</sup>C carbon isotopes
Between 2008 and 2010 various batch experiments were carried out to study the stable carbon isotopic composition of biogas (CH4 and CO2) produced from (i) pure sludge and (ii) sludge including maize. From the evolution of the natural isotopic signature, a temporal change of methanogenic pathways could be detected for the treatment with maize showing that a dominance in acetotrophic methanogenesis was replaced by a mixture of hydrogenotrophic and acetotrophic methanogenesis. For pure sludge, hydrogenotrophic methanogenesis was the dominant or probably exclusive pathway. Experiments with isotopically labelled acetate (99% (CH3COONa)-C-13 and 99% (CH3COONa)-C-13) indicated a significant contribution of syntrophic acetate oxidation (SAO) for all the investigated treatments. In the case of pure sludge, experiments from 2008 showed that acetate was almost entirely oxidised to CO2, i.e. acetotrophic methanogenesis was negligible. However, in 2010, the sludge showed a clear dominance in acetotrophic methanogenesis with a minor contribution by SAO indicating a significant change in the metabolic character. Our results indicate that SAO during anaerobic degradation of maize might be a significant process that needs to be considered in biogas research
Stable carbon isotopes of methane for real- time process monitoring in anaerobic digesters
Efficient operation and stability of biogas plants requires continuous monitoring of the digester content. Traditional laboratory analysis of digester sludge is often complex and time-consuming and shows a delayed response to disruptions within the fermentation process. As a new approach, we applied an online measurement technique (laser absorption spectroscopy) for real-time monitoring of stable carbon isotopes of methane (13C CH 4) in a pilot-scale biogas digester (3500 L) regularly fed with maize silage. Generally, isotopic composition of methane gives information about specific substrate degradation, that is, methanogenic pathways that reflect the actual digester state. First results of a 2-wk monitoring experiment show that stable carbon isotopes of methane respond promptly and highly dynamic to changes in the process state of the digester. In combination with other monitoring parameters (methane production rate, concentration of volatile fatty acids, and pH) the fluctuations in 13C CH 4 can be interpreted as a change in methanogenic pathways due to a high organic loading rate. In this context, 13C CH 4 might be used as a new parameter tool for monitoring and characterization of the process state of the digester
Mean annual temperatures of mid-latitude regions derived from δ<sup>2</sup> H values of wood lignin methoxyl groups and its implications for paleoclimate studies
Tree-rings are widely used climate archives providing annual resolutions on centennial to millennial timescales. Stable isotope ratios of tree-rings have been applied to assist with the delineation of climate parameters such as temperature and precipitation. Here, we investigated stable hydrogen isotope ratios (expressed as δ2H values) of lignin methoxyl groups of wood from various tree species collected along a ~ 3500 km north-south transect across Europe with mean annual temperatures (MAT) ranging from − 4 to + 17 °C. We found a strong linear relationship between MATs and δ2H values of wood lignin methoxyl groups. We used this relationship to predict MATs from randomly collected wood samples and found general agreement between predicted and observed MATs for the mid-latitudes on a global scale. Our results are discussed in context of their paleoclimate relevance and suggest that δ2H values of lignin methoxyl groups might have the potential to reconstruct MATs when applied on mid-latitudinal tree-ring chronologies of the Late Holocene
ROS-driven cellular methane formation: Potential implications for health sciences
Recently it has been proposed that methane might be produced by all living organisms via a mechanism driven by reactive oxygen species that arise through the metabolic activity of cells. Here, we summarise details of this novel reaction pathway and discuss its potential significance for clinical and health sciences. In particular, we highlight the role of oxidative stress in cellular methane formation. As several recent studies also demonstrated the anti-inflammatory potential for exogenous methane-based approaches in mammalians, this article addresses the intriguing question if ROS-driven methane formation has a general physiological role and associated diagnostic potential
Stable carbon isotopes of methane for real-time process monitoring in anaerobic digesters
Stable isotope and high precision concentration measurements confirm that all humans produce and exhale methane
Mammalian formation of methane (methanogenesis) is widely considered to occur exclusively by anaerobic microbial activity in the gastrointestinal tract. Approximately one third of humans, depending on colonization of the gut by methanogenic archaea, are considered methane producers based on the classification terminology of high and low emitters. In this study laser absorption spectroscopy was used to precisely measure concentrations and stable carbon isotope signatures of exhaled methane in breath samples from 112 volunteers with an age range from 1 to 80 years. Here we provide analytical evidence that volunteers exhaled methane levels were significantly above background (inhaled) air. Furthermore, stable carbon isotope values of the exhaled methane unambiguously confirmed that this gas was produced by all of the human subjects studied. Based on the emission and stable carbon isotope patterns of various age groups we hypothesize that next to microbial sources in the gastrointestinal tracts there might be other, as yet unidentified, processes involved in methane formation supporting the idea that humans might also produce methane endogenously in cells. Finally we suggest that stable isotope measurements of volatile organic compounds such as methane might become a useful tool in future medical research diagnostic programs
