7,834 research outputs found
On the Interoperability between Interval Software
The increased appreciation of interval analysis as a powerful tool for controlling round-off errors and modelling
with uncertain data leads to a growing number of diverse interval software. Beside in some other aspects,
the available interval software differs with respect to the environment in which it operates and the provided
functionality. Some specific software tools are built on the top of other more general interval software but
there is no single environment supporting all (or most) of the available interval methods. On another side,
most recent interval applications require a combination of diverse methods. It is difficult for the end-users
to combine and manage the diversity of interval software tools, packages, and research codes, even the latter
being accessible. Two recent initiatives: [1], directed toward developing of a comprehensive full-featured library
of validated routines, and [3] intending to provide a general service framework for validated computing in
heterogeneous environment, reflect the realized necessity for an integration of the available methods and
software tools.
It is commonly understood that quality comprehensive libraries are not compiled by a single person or small
group of people over a short time [1]. Therefore, in this work we present an alternative approach based on
interval software interoperability.
While the simplest form of interoperability is the exchange of data files, we will focus on the ability to run
a particular routine executable in one environment from within another software environment, and vice-versa,
via communication protocols. We discuss the motivation, advantages and some problems that may appear in
providing interoperability between the existing interval software.
Since the general-purpose environments for scientific/technical computing like Matlab, Mathematica, Maple, etc.
have several features not attributable to the compiled languages from one side and on another side most problem
solving tools are developed in some compiled language for efficiency reasons, it is interesting to study
the possibilities for interoperability between these two kinds of interval supporting environments.
More specifically, we base our presentation on the interoperability between Mathematica [5] and external
C-XSC programs [2] via MathLink communication protocol [4]. First, we discuss the portability and reliability
of interval arithmetic in Mathematica. Then, we present MathLink technology for building external
MathLink-compatible programs. On the example of a C-XSC function for solving parametric linear systems,
called from within a Mathematica session, we demonstrate some advantages of interval software interoperability.
Namely, expanded functionality for both environments, exchanging data without using intermediate files and
without any conversion but under dynamics and interactivity in the communication, symbolic manipulation interfaces
for the compiled language software that often make access to the external functionality from within Mathematica
more convenient even than from its own native environment. Once established, MathLink connection to external
interval libraries or problem-solving software opens up an array on new possibilities for the latter.
References:
[1] G. Corliss, R. B. Kearfott, N. Nedialkov, S. Smith: Towards an Interval Subroutine Library,
Workshop on Reliable Engineering Computing, Svannah, Georgia, USA, Feb. 22-24, 2006.
[2] W. Hofschuster: C-XSC: Highlights and new developments. In: Numerical Validation in Current Hardware
Architectures. Number 08021 Dagstuhl Seminar, Internationales Begegnungs- und Forschungszentrum f"ur
Informatik, Schloss Dagstuhl, Germany, 2008.
[3] W. Luther, W. Kramer: Accurate Grid Computing, 12th GAMM-IMACS Int. Symposium on Scientific Computing,
Computer Arithmetic and Validated Numerics (SCAN 2006), Duisburg, Sept. 26-29, 2006.
[4] Ch. Miyaji, P. Abbot eds.: Mathlink: Network Programming with Mathematica, Cambridge Univ. Press, Cambridge, 2001.
[5] Wolfram Research Inc.: Mathematica, Version 5.2, Champaign, IL, 2005
On the Existence of Configurations of Subspaces in a Hilbert Space with Fixed Angles
For a class of -algebras, where -algebra is generated
by projections associated with vertices of graph and depends on a
parameter , we study the sets of
values of such that the algebras have nontrivial
-representations, by using the theory of spectra of graphs. In other words,
we study such values of that the corresponding configurations of
subspaces in a Hilbert space exist.Comment: Published in SIGMA (Symmetry, Integrability and Geometry: Methods and
Applications) at http://www.emis.de/journals/SIGMA
Neugezüchtete flugbrandresistente Gerste aus Bulgarien
Our study presents a part of the long-term program for resistance breeding to smuts in barley in Bulgaria. 56 dihaploid lines were derived from F1-hybrids of two barley crosses between resistant and susceptible Bulgarian and foreign cultivars bearing the resistant genes Run12 and Run13. The DH progenies were tested in 3 generations for loose smut resistance on the field and in the lab with the embryotest. 10 resistant DH-progenies with gene Run12 and 16 resistant DH-progenies with Run13 were selected and agronomically characterised for new cultivar development
Mechanical Models with Interval Parameters
In this paper we consider modelling of composite material with inclusions where the elastic material properties of both matrix and inclusions are uncertain and vary within prescribed bounds. Such mechanical systems, involving interval uncertainties and modelled by finite element method, can be described by parameter dependent systems of linear interval equations and process variables depending on the system solution. A newly developed hybrid interval approach for solving parametric interval linear systems is applied to the considered model and the results are compared to other interval methods. The hybrid approach provides very sharp bounds for the process variables - element strains and stresses. The sources for overestimation when dealing with interval computations are demonstrated. Based on the element strains and stresses, we introduce a definition for the values of nodal strains and stresses by using a set-theoretic approach
Infrared study of spin-Peierls compound alpha'-NaV2O5
Infrared reflectance of alpha'-NaV2O5 single crystals in the frequency range
from 50 cm-1 to 10000 cm-1 was studied for a, b and c-polarisations. In
addition to phonon modes identification, for the a-polarised spectrum a broad
continuum absorption in the range of 1D magnetic excitation energies was found.
The strong near-IR absorption band at 0.8 eV shows a strong anisotropy with
vanishing intensity in c-polarisation. Activation of new phonons due to the
lattice dimerisation were detected below 35K as well as pretransitional
structural fluctuations up to 65K.Comment: 3 pages, 2 figures, 1 table. Contributed paper for the SCES'98 (15-18
July 1998, Paris). To be published in Physica
- …
