133 research outputs found
Fast-slow partially hyperbolic systems versus Freidlin-Wentzell random systems
We consider a simple class of fast-slow partially hyperbolic dynamical
systems and show that the (properly rescaled) behaviour of the slow variable is
very close to a Friedlin--Wentzell type random system for times that are rather
long, but much shorter than the metastability scale. Also, we show the
possibility of a "sink" with all the Lyapunov exponents positive, a phenomenon
that turns out to be related to the lack of absolutely continuity of the
central foliation.Comment: To appear in Journal of Statistical Physic
Anchoring of proteins to lactic acid bacteria
The anchoring of proteins to the cell surface of lactic acid bacteria (LAB) using genetic techniques is an exciting and emerging research area that holds great promise for a wide variety of biotechnological applications. This paper reviews five different types of anchoring domains that have been explored for their efficiency in attaching hybrid proteins to the cell membrane or cell wall of LAB. The most exploited anchoring regions are those with the LPXTG box that bind the proteins in a covalent way to the cell wall. In recent years, two new modes of cell wall protein anchoring have been studied and these may provide new approaches in surface display. The important progress that is being made with cell surface display of chimaeric proteins in the areas of vaccine development and enzyme- or whole-cell immobilisation is highlighted.
E. coli promotes human Vγ9Vδ2 T cell transition from cytokine-producing bactericidal effectors to professional phagocytic killers in a TCR-dependent manner
γδT cells provide immune-surveillance and host defense against infection and cancer. Surprisingly, functional details of γδT cell antimicrobial immunity to infection remain largely unexplored. Limited data suggests that γδT cells can phagocytose particles and act as professional antigen-presenting cells (pAPC). These potential functions, however, remain controversial. To better understand γδT cell-bacterial interactions, an ex vivo co-culture model of human peripheral blood mononuclear cell (PBMC) responses to Escherichia coli was employed. Vγ9Vδ2 cells underwent rapid T cell receptor (TCR)-dependent proliferation and functional transition from cytotoxic, inflammatory cytokine immunity, to cell expansion with diminished cytokine but increased costimulatory molecule expression, and capacity for professional phagocytosis. Phagocytosis was augmented by IgG opsonization, and inhibited by TCR-blockade, suggesting a licensing interaction involving the TCR and FcγR. Vγ9Vδ2 cells displayed potent cytotoxicity through TCR-dependent and independent mechanisms. We conclude that γδT cells transition from early inflammatory cytotoxic killers to myeloid-like APC in response to infectious stimuli
Challenges Using Extrapolated Family-level Macroinvertebrate Metrics in Moderately Disturbed Tropical Streams: a Case-study From Belize
Family-level biotic metrics were originally designed to rapidly assess gross organic pollution effects, but came to be regarded as general measures of stream degradation. Improvements in water quality in developed countries have reignited debate about the limitations of family-level taxonomy to detect subtle change, and is resulting in a shift back towards generic and species-level analysis to assess smaller effects. Although the scale of pollution characterizing past condition of streams in developed countries persists in many developing regions, some areas are still considered to be only moderately disturbed. We sampled streams in Belize to investigate the ability of family-level macroinvertebrate metrics to detect change in stream catchments where less than 30% of forest had been cleared. Where disturbance did not co-vary with natural gradients of change, and in areas characterized by low intensity activities, none of the metrics tested detected significant change, despite evidence of environmental impacts. We highlight the need for further research to clarify the response of metrics to disturbance over a broader study area that allows replication for confounding sources of natural variation. We also recommend research to develop more detailed understanding of the taxonomy and ecology of Neotropical macroinvertebrates to improve the robustness of metric use
Hospitalization budget impact during the COVID-19 pandemic in Spain
To Mrs. Anne Murray for her support to translate the manuscript. This article
is part of the doctoral thesis of Laura Álvarez as part of the Doctoral Program
in Pharmacy, Granada University (Spain).Objectives: The aim was to determine the direct impact of the COVID-19 pandemic on Spain’s health budget.
Methods: Budget impact analyses based on retrospective data from patients with suspected severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) admitted to a Spanish hospital between February 26 and May 21,
2020. Direct medical costs from the perspective of the hospital were calculated. We analyzed diagnostic tests,
drugs, medical and nursing care, and isolation ward and ICU stays for three cohorts: patients seen in the
emergency room only, hospitalized patients who tested positive for SARS-CoV-2, and patients who tested negative.
Results: The impact on the hospital’s budget for the 3 months was calculated at €15,633,180, 97.4% of which was
related to health care and hospitalization. ICU stays accounted for 5.3% of the total costs. The mean cost per
patient was €10,744. The main costs were staffing costs (10,131 to 11,357 €/patient for physicians and 10,274 to
11,215 €/patient for nurses). Scenario analysis showed that the range of hospital expenditure was between
€14,693,256 and €16,524,924. The median impact of the pandemic on the Spanish health budget in the sensitivity
analysis using bootstrapped individual data was €9357 million (interquartile range [IQR], 9071 to 9689) for the
conservative scenario (113,588 hospital admissions and 11,664 ICU admissions) and €10,385 million (IQR, 110,030 to
10,758) for the worst-case scenario (including suspected cases).
Conclusion: The impact of COVID-19 on the Spanish public health budget (12.3% of total public health
expenditure) is greater than multiple sclerosis, cancer and diabetes cost
Global attractor and asymptotic dynamics in the Kuramoto model for coupled noisy phase oscillators
We study the dynamics of the large N limit of the Kuramoto model of coupled
phase oscillators, subject to white noise. We introduce the notion of shadow
inertial manifold and we prove their existence for this model, supporting the
fact that the long term dynamics of this model is finite dimensional. Following
this, we prove that the global attractor of this model takes one of two forms.
When coupling strength is below a critical value, the global attractor is a
single equilibrium point corresponding to an incoherent state. Conversely, when
coupling strength is beyond this critical value, the global attractor is a
two-dimensional disk composed of radial trajectories connecting a saddle
equilibrium (the incoherent state) to an invariant closed curve of locally
stable equilibria (partially synchronized state). Our analysis hinges, on the
one hand, upon sharp existence and uniqueness results and their consequence for
the existence of a global attractor, and, on the other hand, on the study of
the dynamics in the vicinity of the incoherent and synchronized equilibria. We
prove in particular non-linear stability of each synchronized equilibrium, and
normal hyperbolicity of the set of such equilibria. We explore mathematically
and numerically several properties of the global attractor, in particular we
discuss the limit of this attractor as noise intensity decreases to zero.Comment: revised version, 28 pages, 4 figure
PpiA, a Surface PPIase of the Cyclophilin Family in Lactococcus lactis
Background: Protein folding in the envelope is a crucial limiting step of protein export and secretion. In order to better understand this process in Lactococcus lactis, a lactic acid bacterium, genes encoding putative exported folding factors like Peptidyl Prolyl Isomerases (PPIases) were searched for in lactococcal genomes. Results: In L. lactis, a new putative membrane PPIase of the cyclophilin subfamily, PpiA, was identified and characterized. ppiA gene was found to be constitutively expressed under normal and stress (heat shock, H2O2) conditions. Under normal conditions, PpiA protein was synthesized and released from intact cells by an exogenously added protease, showing that it was exposed at the cell surface. No obvious phenotype could be associated to a ppiA mutant strain under several laboratory conditions including stress conditions, except a very low sensitivity to H2O2. Induction of a ppiA copy provided in trans had no effect i) on the thermosensitivity of an mutant strain deficient for the lactococcal surface protease HtrA and ii) on the secretion and stability on four exported proteins (a highly degraded hybrid protein and three heterologous secreted proteins) in an otherwise wild-type strain background. However, a recombinant soluble form of PpiA that had been produced and secreted in L. lactis and purified from a culture supernatant displayed both PPIase and chaperone activities. Conclusions: Although L. lactis PpiA, a protein produced and exposed at the cell surface under normal conditions, displaye
Soluble mutant huntingtin drives early human pathogenesis in Huntington's disease
Huntington's disease (HD) is an incurable inherited brain disorder characterised by massive degeneration of striatal neurons, which correlates with abnormal accumulation of misfolded mutant huntingtin (mHTT) protein. Research on HD has been hampered by the inability to study early dysfunction and progressive degeneration of human striatal neurons in vivo. To investigate human pathogenesis in a physiologically relevant context, we transplanted human pluripotent stem cell-derived neural progenitor cells (hNPCs) from control and HD patients into the striatum of new-born mice. Most hNPCs differentiated into striatal neurons that projected to their target areas and established synaptic connexions within the host basal ganglia circuitry. Remarkably, HD human striatal neurons first developed soluble forms of mHTT, which primarily targeted endoplasmic reticulum, mitochondria and nuclear membrane to cause structural alterations. Furthermore, HD human cells secreted extracellular vesicles containing mHTT monomers and oligomers, which were internalised by non-mutated mouse striatal neurons triggering cell death. We conclude that interaction of mHTT soluble forms with key cellular organelles initially drives disease progression in HD patients and their transmission through exosomes contributes to spread the disease in a non-cell autonomous manner
Predicting River Macroinvertebrate Communities Distributional Shifts under Future Global Change Scenarios in the Spanish Mediterranean Area
Several studies on global change over the next century predict increases in mean air temperatures of between 1°C to 5°C that would affect not only water temperature but also river flow. Climate is the predominant environmental driver of thermal and flow regimes of freshwater ecosystems, determining survival, growth, metabolism, phenology and behaviour as well as biotic interactions of aquatic fauna. Thus, these changes would also have consequences for species phenology, their distribution range, and the composition and dynamics of communities. These effects are expected to be especially severe in the Mediterranean basin due its particular climate conditions, seriously threatening Southern European ecosystems. In addition, species with restricted distributions and narrow ecological requirements, such as those living in the headwaters of rivers, will be severely affected. The study area corresponds to the Spanish Mediterranean and Balearic Islands, delimited by the Köppen climate boundary. With the application of the MEDPACS (MEDiterranean Prediction And Classification System) predictive approach, the macroinvertebrate community was predicted for current conditions and compared with three posible scenarios of watertemperature increase and its associated water flow reductions. The results indicate that the aquatic macroinvertebrate communities will undergo a drastic impact, with reductions in taxa richness for each scenario in relation to simulated current conditions, accompanied by changes in the taxa distribution pattern. Accordingly, the distribution area of most of the taxa (65.96%) inhabiting the mid-high elevations would contract and rise in altitude. Thus, families containing a great number of generalist species will move upstream to colonize new zones with lower water temperatures. By contrast, more vulnerable taxa will undergo reductions in their distribution area.This work was funded by GUADALMED-II (REN2001-3438-C07-06/HID), a project of excellence from “Junta de Andalucía” (RNM-02654/FEDER), the Spanish “Ministerio de Ciencia e Innovación” (CGL2007-61856/BOS), projects and a collaboration agreement between the “Spanish Ministerio de Medio Ambiente, Medio Rural y Marino” and the University of Granada (21.812-0062/8511)
- …
