194 research outputs found

    Anomalous CO2 Ice Toward HOPS-68: A Tracer of Protostellar Feedback

    Get PDF
    We report the detection of a unique CO2 ice band toward the deeply embedded, low-mass protostar HOPS-68. Our spectrum, obtained with the Infrared Spectrograph onboard the Spitzer Space Telescope, reveals a 15.2 micron CO2 ice bending mode profile that cannot modeled with the same ice structure typically found toward other protostars. We develop a modified CO2 ice profile decomposition, including the addition of new high-quality laboratory spectra of pure, crystalline CO2 ice. Using this model, we find that 87-92% of the CO2 is sequestered as spherical, CO2-rich mantles, while typical interstellar ices show evidence of irregularly-shaped, hydrogen-rich mantles. We propose that (1) the nearly complete absence of unprocessed ices along the line-of-sight is due to the flattened envelope structure of HOPS-68, which lacks cold absorbing material in its outer envelope, and possesses an extreme concentration of material within its inner (10 AU) envelope region and (2) an energetic event led to the evaporation of inner envelope ices, followed by cooling and re-condensation, explaining the sequestration of spherical, CO2 ice mantles in a hydrogen-poor mixture. The mechanism responsible for the sublimation could be either a transient accretion event or shocks in the interaction region between the protostellar outflow and envelope. The proposed scenario is consistent with the rarity of the observed CO2 ice profile, the formation of nearly pure CO2 ice, and the production of spherical ice mantles. HOPS-68 may therefore provide a unique window into the protostellar feedback process, as outflows and heating shape the physical and chemical structure of protostellar envelopes and molecular clouds.Comment: Accepted to the Astrophysical Journal, 2013 February 15: 14 pages, 9 figures, 3 table

    Test results of Spacelab 2 infrared telescope focal plane

    Get PDF
    The small helium cooled infrared telescope for Spacelab 2 is designed for sensitive mapping of extended, low-surface-brightness celestial sources as well as highly sensitive investigations of the shuttle contamination environment (FPA) for this mission is described as well as the design for a thermally isolated, self-heated J-FET transimpedance amplifier. This amplifier is Johnson noise limited for feedback resistances from less than 10 to the 8th power Omega to greater than 2 x 10 to the 10th power Omega at T = 4.2K. Work on the focal plane array is complete. Performance testing for qualification of the flight hardware is discussed, and results are presented. All infrared data channels are measured to be background limited by the expected level of zodiacal emission

    A 10-hour period revealed in optical spectra of the highly variable WN8 Wolf-Rayet star WR 123

    Full text link
    Aims. What is the origin of the large-amplitude variability in Wolf-Rayet WN8 stars in general and WR123 in particular? A dedicated spectroscopic campaign targets the ten-hour period previously found in the high-precision photometric data obtained by the MOST satellite. Methods. In June-August 2003 we obtained a series of high signal-to-noise, mid-resolution spectra from several sites in the {\lambda}{\lambda} 4000 - 6940 A^{\circ} domain. We also followed the star with occasional broadband (Johnson V) photometry. The acquired spectroscopy allowed a detailed study of spectral variability on timescales from \sim 5 minutes to months. Results. We find that all observed spectral lines of a given chemical element tend to show similar variations and that there is a good correlation between the lines of different elements, without any significant time delays, save the strong absorption components of the Hei lines, which tend to vary differently from the emission parts. We find a single sustained periodicity, P \sim 9.8 h, which is likely related to the relatively stable pulsations found in MOST photometry obtained one year later. In addition, seemingly stochastic, large-amplitude variations are also seen in all spectral lines on timescales of several hours to several days.Comment: 6 pages, 4 figures, 2 tables, data available on-line, accepted in A&A Research Note

    The Mid-infrared Evolution of the FU Orionis Disk

    Get PDF
    We present new SOFIA-FORCAST observations obtained in 2016 February of the archetypal outbursting low-mass young stellar object FU Orionis, and we compare the continuum, solid-state, and gas properties with mid-infrared data obtained at the same wavelengths in 2004 with Spitzer-IRS. In this study, we conduct the first mid-infrared spectroscopic comparison of an FUor over a long time period. Over a 12-year period, UBVR monitoring indicates that FU Orionis has continued its steady decrease in overall brightness by ~14%. We find that this decrease in luminosity occurs only at wavelengths ≾20 μm. In particular, the continuum shortward of the silicate emission complex at 10 μm exhibits a ~12% (~3σ) drop in flux density but no apparent change in slope; both the Spitzer and SOFIA spectra are consistent with a 7200 K blackbody. Additionally, the detection of water absorption is consistent with the Spitzer spectrum. The silicate emission feature at 10 μm continues to be consistent with unprocessed grains, unchanged over 12 years. We conclude that either the accretion rate in FU Orionis has decreased by ~12–14% over this time baseline or the inner disk has cooled, but the accretion disk remains in a superheated state outside the innermost region

    Hier ist wahrhaftig ein Loch im Himmel - The NGC 1999 dark globule is not a globule

    Full text link
    The NGC 1999 reflection nebula features a dark patch with a size of ~10,000 AU, which has been interpreted as a small, dense foreground globule and possible site of imminent star formation. We present Herschel PACS far-infrared 70 and 160mum maps, which reveal a flux deficit at the location of the globule. We estimate the globule mass needed to produce such an absorption feature to be a few tenths to a few Msun. Inspired by this Herschel observation, we obtained APEX LABOCA and SABOCA submillimeter continuum maps, and Magellan PANIC near-infrared images of the region. We do not detect a submillimer source at the location of the Herschel flux decrement; furthermore our observations place an upper limit on the mass of the globule of ~2.4x10^-2 Msun. Indeed, the submillimeter maps appear to show a flux depression as well. Furthermore, the near-infrared images detect faint background stars that are less affected by extinction inside the dark patch than in its surroundings. We suggest that the dark patch is in fact a hole or cavity in the material producing the NGC 1999 reflection nebula, excavated by protostellar jets from the V 380 Ori multiple system.Comment: accepted for the A&A Herschel issue; 7 page

    Herschel/PACS Imaging of Protostars in the HH 1-2 Outflow Complex

    Full text link
    We present 70 and 160 micron Herschel science demonstration images of a field in the Orion A molecular cloud that contains the prototypical Herbig-Haro objects HH 1 and 2, obtained with the Photodetector Array Camera and Spectrometer (PACS). These observations demonstrate Herschel's unprecedented ability to study the rich population of protostars in the Orion molecular clouds at the wavelengths where they emit most of their luminosity. The four protostars previously identified by Spitzer 3.6-40 micron imaging and spectroscopy are detected in the 70 micron band, and three are clearly detected at 160 microns. We measure photometry of the protostars in the PACS bands and assemble their spectral energy distributions (SEDs) from 1 to 870 microns with these data, Spitzer spectra and photometry, 2MASS data, and APEX sub-mm data. The SEDs are fit to models generated with radiative transfer codes. From these fits we can constrain the fundamental properties of the protostars. We find luminosities in the range 12-84 L_sun and envelope densities spanning over two orders of magnitude. This implies that the four protostars have a wide range of envelope infall rates and evolutionary states: two have dense, infalling envelopes, while the other two have only residual envelopes. We also show the highly irregular and filamentary structure of the cold dust and gas surrounding the protostars as traced at 160 microns.Comment: 6 pages, 4 figures, accepted for publication in the A&A Herschel special issu

    Expertise & Perceptions of Risk in CoreTrustSeal Certification

    Get PDF
    This poster examines the relationship between risk perception and expertise among staff members of CoreTrustSeal certified repositories. Findings indicate that relationships exist between level of education and professional role and survey respondent attitudes about potential sources of risk and the CoreTrustSeal checklist sections. This poster will examine these findings in greater detail

    Herschel/PACS Spectroscopic Survey of Protostars in Orion: The Origin of Far-infrared CO Emission

    Get PDF
    We present far-infrared (57-196 μm) spectra of 21 protostars in the Orion molecular clouds. These were obtained with the Photodetector Array Camera and Spectrometer (PACS) on board the Herschel Space observatory as part of the Herschel Orion Protostar Survey program. We analyzed the emission lines from rotational transitions of CO, involving rotational quantum numbers in the range J_(up) = 14-46, using PACS spectra extracted within a projected distance of ≾2000 AU centered on the protostar. The total luminosity of the CO lines observed with PACS (L_(CO)) is found to increase with increasing protostellar luminosity (L_(bol)). However, no significant correlation is found between L_(CO) and evolutionary indicators or envelope properties of the protostars such as bolometric temperature, T_(bol), or envelope density. The CO rotational (excitation) temperature implied by the line ratios increases with increasing rotational quantum number J, and at least 3–4 rotational temperature components are required to fit the observed rotational diagram in the PACS wavelength range. The rotational temperature components are remarkably invariant between protostars and show no dependence on L_(bol), T_(bol), or envelope density, implying that if the emitting gas is in local thermodynamic equilibrium, the CO emission must arise in multiple temperature components that remain independent of L_(bol) over two orders of magnitudes. The observed CO emission can also be modeled as arising from a single-temperature gas component or from a medium with a power-law temperature distribution; both of these require sub-thermally excited molecular gas at low densities (n(H_2) ≾ 10^6 cm^(–3)) and high temperatures (T≳2000 K). Our results suggest that the contribution from photodissociation regions, produced along the envelope cavity walls from UV-heating, is unlikely to be the dominant component of the CO emission observed with PACS. Instead, the "universality" of the rotational temperatures and the observed correlation between L_(CO) and L_(bol) can most easily be explained if the observed CO emission originates in shock-heated, hot (T≳2000 K), sub-thermally excited (n(H_2) ≾ 10^6 cm^(–3)) molecular gas. Post-shock gas at these densities is more likely to be found within the outflow cavities along the molecular outflow or along the cavity walls at radii ≳ several 100-1000 AU

    Heatshield for Extreme Entry Environment Technology (HEEET) for Missions to Saturn and Beyond

    Get PDF
    This poster provides an overview of the requirements, design, development and testing of the 3D Woven TPS being developed under NASAs Heatshield for Extreme Entry Environment Technology (HEEET) project. Under this current program, NASA is working to develop a Thermal Protection System (TPS) capable of surviving entry into Saturn. A primary goal of the project is to build and test an Engineering Test Unit (ETU) to establish a Technical Readiness Level (TRL) of 6 for this technology by 2017

    The regulatory subunit of PKA-I remains partially structured and undergoes β-aggregation upon thermal denaturation

    Get PDF
    Background: The regulatory subunit (R) of cAMP-dependent protein kinase (PKA) is a modular flexible protein that responds with large conformational changes to the binding of the effector cAMP. Considering its highly dynamic nature, the protein is rather stable. We studied the thermal denaturation of full-length RIα and a truncated RIα(92-381) that contains the tandem cyclic nucleotide binding (CNB) domains A and B. Methodology/Principal Findings: As revealed by circular dichroism (CD) and differential scanning calorimetry, both RIα proteins contain significant residual structure in the heat-denatured state. As evidenced by CD, the predominantly α-helical spectrum at 25°C with double negative peaks at 209 and 222 nm changes to a spectrum with a single negative peak at 212-216 nm, characteristic of β-structure. A similar α→β transition occurs at higher temperature in the presence of cAMP. Thioflavin T fluorescence and atomic force microscopy studies support the notion that the structural transition is associated with cross-β-intermolecular aggregation and formation of non-fibrillar oligomers. Conclusions/Significance: Thermal denaturation of RIα leads to partial loss of native packing with exposure of aggregation-prone motifs, such as the B' helices in the phosphate-binding cassettes of both CNB domains. The topology of the β-sandwiches in these domains favors inter-molecular β-aggregation, which is suppressed in the ligand-bound states of RIα under physiological conditions. Moreover, our results reveal that the CNB domains persist as structural cores through heat-denaturation. © 2011 Dao et al
    corecore