278 research outputs found
New level doubling architecture of cascaded Multilevel inverter
This study presents a new topology of single-phase cascaded multilevel inverter (CMLI). The proposed topology offers an optimised DC source utilisation, reduced switch count and curtailment of active switches in the conduction path for minimising power losses. It can produce almost twice the number of output voltage steps in comparison to the cascaded H-bridge, hence named level-doubling architecture, and can be operated as both symmetric and asymmetric CMLIs. Identical modules of proposed CMLI precludes requirement of a variety of semiconductors and provides ease for spare management. The modular design also facilitates mass production and enhances system reliability. Furthermore, the proposed topology can be easily extended to high-voltage applications. The proposed design is tested for its practicability by simulations in MATLAB/ Simulink and results are verified by experimental set up of a scaled prototype single-phase model.</p
Experimental verification of trinary DC source cascaded H-bridge multilevel inverter using unipolar pulse width modulation
Multilevel inverters (MLIs) are an imperative solution for high power and high voltage applications. The MLIs can be classified into two categories such as symmetric and asymmetric. The asymmetric type MLIs has large number of output voltage steps with less number of input DC voltage sources and switching devices. In this paper, a single phase asymmetric (trinary sequence DC source) Cascaded H-Bridge MLI has been developed using unipolar PWM control schemes. The topology can produce 27-level output voltage with the help of 12 switches and 3 DC sources. It has been examined with a diverse combination of multicarrier unipolar PWM control. The PWM control includes Phase Disposition (PDPWM), Alternative Opposition Disposition (APODPWM), Carrier overlapping (COPWM), and Variable Frequency (VFPWM). The harmonic content of output voltage for each technique has been observed with different modulation indices. The demonstration of proposed topology for generating 27-level output voltage has been tested through simulation in MATLAB-SIMULINK and verified with laboratory-based experimental setup. From the results, it is evident that the APODPWM offers quality output voltage with relatively low harmonic distortion. Also, it has been observed that COPWM performance is superior since it delivers relatively higher fundamental RMS output voltage
Transport of small anionic and neutral solutes through chitosan membranes: Dependence on cross-linking and chelation of divalent cations
Chitosan membranes were prepared by solvent casting and cross-linked with glutaraldehyde at several ratios
under homogeneous conditions. The cross-linking degree, varying from 0 to 20%, is defined as the ratio between
the total aldehyde groups and the amine groups of chitosan. Permeability experiments were conducted using a
side-by-side diffusion cell to determine the flux of small molecules of similar size but with different chemical
moieties, either ionized (benzoic acid, salicylic acid, and phthalic acid) or neutral (2-phenylethanol) at physiological
pH. The permeability of the different model molecules revealed to be dependent on the affinity of those structurally
similar molecules to chitosan. The permeability of the salicylate anion was significantly enhanced by the presence
of metal cations commonly present in biological fluids, such as calcium and magnesium, but remained unchanged
for the neutral 2-phenylethanol. This effect could be explained by the chelation of metal cations on the amine
groups of chitosan, which increased the partition coefficient. The cross-linking degree was also correlated with
the permeability and partition coefficient. The change in the permeation properties of chitosan to anionic solutes
in the presence of these metallic cations is an important result and should be taken into consideration when trying
to make in vitro predictions of the drug release from chitosan-based controlled release systems
Pre-operative hypoalbuminemia: overlooked prior knee arthroplasty?
Background: Role of preoperative serum albumin on primary total knee arthroplasty.Methods: A total of 1022 patients who underwent primary knee arthroplasty were collected. All patients were divided into the control group (preoperative serum albumin ≥3.5 g/dl) and case group (preoperative serum albumin <3.5 g/dl). The risk factors of preoperative hypoalbuminemia and the postoperative complications were analyzed.Results: Compared to controls, hypoalbuminemia patients were older (p<0.05 ), had higher risk for any complication such as delayed wound healing, pleural effusion, and pneumonia, lower BMI and longer hospital stay (p<0.001).Conclusions: Preoperative hypoalbuminemia is more frequent in patients who are older, have poor nutritional condition, and have more than two concurrent disorders. Hypoalbuminemia before surgery is linked to a higher risk of postoperative problems
Advanced Technologies for Oral Controlled Release: Cyclodextrins for oral controlled release
Cyclodextrins (CDs) are used in oral pharmaceutical formulations, by means of inclusion complexes formation, with the following advantages for the drugs: (1) solubility, dissolution rate, stability and bioavailability enhancement; (2) to modify the drug release site and/or time profile; and (3) to reduce or prevent gastrointestinal side effects and unpleasant smell or taste, to prevent drug-drug or drug-additive interactions, or even to convert oil and liquid drugs into microcrystalline or amorphous powders. A more recent trend focuses on the use of CDs as nanocarriers, a strategy that aims to design versatile delivery systems that can encapsulate drugs with better physicochemical properties for oral delivery. Thus, the aim of this work was to review the applications of the CDs and their hydrophilic derivatives on the solubility enhancement of poorly water soluble drugs in order to increase their dissolution rate and get immediate release, as well as their ability to control (to prolong or to delay) the release of drugs from solid dosage forms, either as complexes with the hydrophilic (e.g. as osmotic pumps) and/ or hydrophobic CDs. New controlled delivery systems based on nanotechonology carriers (nanoparticles and conjugates) have also been reviewed
Pine cone scale-inspired motile origami
Stimuli-sensitive hydrogels have received attention because of their potential applications in various fields. Stimuli-directed motion offers many practical applications, such as in drug delivery systems and actuators. Directed motion of asymmetric hydrogels has long been designed; however, few studies have investigated the motion control of symmetric hydrogels. We designed a pine cone scale-inspired movable temperature-sensitive symmetric hydrogel that contains Fe3O4. Alignment of Fe3O4 along the magnetic force is key in motion control in which Fe3O4 acts like fibers in a pine cone scale. Although a homogeneous temperature-sensitive hydrogel cannot respond to a temperature gradient, the Fe3O4-containing hydrogel demonstrates considerable bending motion. Varying degrees and directions of motion are easily facilitated by controlling the amount and alignment angle of the Fe3O4. The shape of the hydrogel layer also influences the morphological structure. This study introduced facile and low-cost methods to control various bending motions. These results can be applied to many fields of engineering, including industrial engineering.111Ysciescopu
Biomaterials Approaches to Combating Oral Biofilms and Dental Disease
Background: Possibilities for biomaterials to impact the dental caries epidemic are reviewed with emphasis placed on novel delivery biomaterials and new therapeutic targets
Elastin-like polypeptides as a promising family of genetically-engineered protein based polymers
Polymeric Micelles in Anticancer Therapy: Targeting, Imaging and Triggered Release
Micelles are colloidal particles with a size around 5–100 nm which are currently under investigation as carriers for hydrophobic drugs in anticancer therapy. Currently, five micellar formulations for anticancer therapy are under clinical evaluation, of which Genexol-PM has been FDA approved for use in patients with breast cancer. Micelle-based drug delivery, however, can be improved in different ways. Targeting ligands can be attached to the micelles which specifically recognize and bind to receptors overexpressed in tumor cells, and chelation or incorporation of imaging moieties enables tracking micelles in vivo for biodistribution studies. Moreover, pH-, thermo-, ultrasound-, or light-sensitive block copolymers allow for controlled micelle dissociation and triggered drug release. The combination of these approaches will further improve specificity and efficacy of micelle-based drug delivery and brings the development of a ‘magic bullet’ a major step forward
- …
