283 research outputs found
Gravitational waves from Sco X-1: A comparison of search methods and prospects for detection with advanced detectors
The low-mass X-ray binary Scorpius X-1 (Sco X-1) is potentially the most
luminous source of continuous gravitational-wave radiation for interferometers
such as LIGO and Virgo. For low-mass X-ray binaries this radiation would be
sustained by active accretion of matter from its binary companion. With the
Advanced Detector Era fast approaching, work is underway to develop an array of
robust tools for maximizing the science and detection potential of Sco X-1. We
describe the plans and progress of a project designed to compare the numerous
independent search algorithms currently available. We employ a mock-data
challenge in which the search pipelines are tested for their relative
proficiencies in parameter estimation, computational efficiency, robust- ness,
and most importantly, search sensitivity. The mock-data challenge data contains
an ensemble of 50 Scorpius X-1 (Sco X-1) type signals, simulated within a
frequency band of 50-1500 Hz. Simulated detector noise was generated assuming
the expected best strain sensitivity of Advanced LIGO and Advanced VIRGO ( Hz). A distribution of signal amplitudes was then
chosen so as to allow a useful comparison of search methodologies. A factor of
2 in strain separates the quietest detected signal, at
strain, from the torque-balance limit at a spin frequency of 300 Hz, although
this limit could range from (25 Hz) to (750 Hz) depending on the unknown frequency of Sco X-1. With future
improvements to the search algorithms and using advanced detector data, our
expectations for probing below the theoretical torque-balance strain limit are
optimistic.Comment: 33 pages, 11 figure
A Computerized System to Solve Difficulties in Finding Medicines under the Medicine Shortages in Sri Lanka
Due to ongoing financial crisis in Sri Lanka, patients are starting to suffer from medicine shortages at an increasing rate. Patients are having to go to multiple pharmacies to find certain medicines which could result in health complications. Although e-pharmacy platforms provide the functionality to order medicines by uploading the prescription sheet, they do not provide alternatives on where to find the medicines that are not available in the pharmacy. This research introduces a new functionality to provide patients suggestion on where exactly to find missing medicines. This is found through checking the stock availability of the medicine in other pharmacies in sorted order with respect to the delivery location of the patient taken via Google map API to make the process much more efficient and practical. This is achieved by implementing a global identifier for each medicine where all pharmacies keep the records of the medicines in reference to the defined global identifier of that medicine. In addition to that, the system allows patients to view all the pharmacies nearest to their delivery location and give the freedom to place orders to whichever pharmacy they prefer. If a medicine is not available in the pharmacy which the order was placed for, the system will give suggestions to the patient on where exactly to buy the medicine
Localization and Broadband Follow-Up of the Gravitational-Wave Transient GW150914
A gravitational-wave (GW) transient was identified in data recorded by the Advanced Laser InterferometerGravitational-wave Observatory (LIGO) detectors on 2015 September 14. The event, initially designated G184098and later given the name GW150914, is described in detail elsewhere. By prior arrangement, preliminary estimatesof the time, significance, and sky location of the event were shared with 63 teams of observers covering radio,optical, near-infrared, X-ray, and gamma-ray wavelengths with ground- and space-based facilities. In this Letter wedescribe the low-latency analysis of the GW data and present the sky localization of the first observed compactbinary merger. We summarize the follow-up observations reported by 25 teams via private Gamma-rayCoordinates Network circulars, giving an overview of the participating facilities, the GW sky localizationcoverage, the timeline, and depth of the observations. As this event turned out to be a binary black hole merger,there is little expectation of a detectable electromagnetic (EM) signature. Nevertheless, this first broadbandcampaign to search for a counterpart of an Advanced LIGO source represents a milestone and highlights the broadcapabilities of the transient astronomy community and the observing strategies that have been developed to pursueneutron star binary merger events. Detailed investigations of the EM data and results of the EM follow-upcampaign are being disseminated in papers by the individual teams
Search for post-merger gravitational waves from the remnant of the binary neutron star merger GW170817
In Advanced LIGO, detection and astrophysical source parameter estimation of the binary black hole merger GW150914 requires a calibrated estimate of the gravitational-wave strain sensed by the detectors. Producing an estimate from each detector's differential arm length control loop readout signals requires applying time domain filters, which are designed from a frequency domain model of the detector's gravitational-wave response. The gravitational-wave response model is determined by the detector's opto-mechanical response and the properties of its feedback control system. The measurements used to validate the model and characterize its uncertainty are derived primarily from a dedicated photon radiation pressure actuator, with cross-checks provided by optical and radio frequency references. We describe how the gravitational-wave readout signal is calibrated into equivalent gravitational-wave-induced strain and how the statistical uncertainties and systematic errors are assessed. Detector data collected over 38 calendar days, from September 12 to October 20, 2015, contain the event GW150914 and approximately 16 of coincident data used to estimate the event false alarm probability. The calibration uncertainty is less than 10% in magnitude and 10 degrees in phase across the relevant frequency band 20 Hz to 1 kHz
Insect pathogens as biological control agents: back to the future
The development and use of entomopathogens as classical, conservation and augmentative biological control agents have included a number of successes and some setbacks in the past 15 years. In this forum paper we present current information on development, use and future directions of insect-specific viruses, bacteria, fungi and nematodes as components of integrated pest management strategies for control of arthropod pests of crops, forests, urban habitats, and insects of medical and veterinary importance.
Insect pathogenic viruses are a fruitful source of MCAs, particularly for the control of lepidopteran pests. Most research is focused on the baculoviruses, important pathogens of some globally important pests for which control has become difficult due to either pesticide resistance or pressure to reduce pesticide residues. Baculoviruses are accepted as safe, readily mass produced, highly pathogenic and easily formulated and applied control agents. New baculovirus products are appearing in many countries and gaining an increased market share. However, the absence of a practical in vitro mass production system, generally higher production costs, limited post application persistence, slow rate of kill and high host specificity currently contribute to restricted use in pest control. Overcoming these limitations are key research areas for which progress could open up use of insect viruses to much larger markets.
A small number of entomopathogenic bacteria have been commercially developed for control of insect pests. These include several Bacillus thuringiensis sub-species, Lysinibacillus (Bacillus) sphaericus, Paenibacillus spp. and Serratia entomophila. B. thuringiensis sub-species kurstaki is the most widely used for control of pest insects of crops and forests, and B. thuringiensis sub-species israelensis and L. sphaericus are the primary pathogens used for medically important pests including dipteran vectors,. These pathogens combine the advantages of chemical pesticides and microbial control agents (MCAs): they are fast acting, easy to produce at a relatively low cost, easy to formulate, have a long shelf life and allow delivery using conventional application equipment and systemics (i.e. in transgenic plants). Unlike broad spectrum chemical pesticides, B. thuringiensis toxins are selective and negative environmental impact is very limited. Of the several commercially produced MCAs, B. thuringiensis (Bt) has more than 50% of market share. Extensive research, particularly on the molecular mode of action of Bt toxins, has been conducted over the past two decades. The Bt genes used in insect-resistant transgenic crops belong to the Cry and vegetative insecticidal protein families of toxins. Bt has been highly efficacious in pest management of corn and cotton, drastically reducing the amount of broad spectrum chemical insecticides used while being safe for consumers and non-target organisms. Despite successes, the adoption of Bt crops has not been without controversy. Although there is a lack of scientific evidence regarding their detrimental effects, this controversy has created the widespread perception in some quarters that Bt crops are dangerous for the environment. In addition to discovery of more efficacious isolates and toxins, an increase in the use of Bt products and transgenes will rely on innovations in formulation, better delivery systems and ultimately, wider public acceptance of transgenic plants expressing insect-specific Bt toxins.
Fungi are ubiquitous natural entomopathogens that often cause epizootics in host insects and possess many desirable traits that favor their development as MCAs. Presently, commercialized microbial pesticides based on entomopathogenic fungi largely occupy niche markets. A variety of molecular tools and technologies have recently allowed reclassification of numerous species based on phylogeny, as well as matching anamorphs (asexual forms) and teleomorphs (sexual forms) of several entomopathogenic taxa in the Phylum Ascomycota. Although these fungi have been traditionally regarded exclusively as pathogens of arthropods, recent studies have demonstrated that they occupy a great diversity of ecological niches. Entomopathogenic fungi are now known to be plant endophytes, plant disease antagonists, rhizosphere colonizers, and plant growth promoters. These newly understood attributes provide possibilities to use fungi in multiple roles. In addition to arthropod pest control, some fungal species could simultaneously suppress plant pathogens and plant parasitic nematodes as well as promote plant growth. A greater understanding of fungal ecology is needed to define their roles in nature and evaluate their limitations in biological control. More efficient mass production, formulation and delivery systems must be devised to supply an ever increasing market. More testing under field conditions is required to identify effects of biotic and abiotic factors on efficacy and persistence. Lastly, greater attention must be paid to their use within integrated pest management programs; in particular, strategies that incorporate fungi in combination with arthropod predators and parasitoids need to be defined to ensure compatibility and maximize efficacy.
Entomopathogenic nematodes (EPNs) in the genera Steinernema and Heterorhabditis are potent MCAs. Substantial progress in research and application of EPNs has been made in the past decade. The number of target pests shown to be susceptible to EPNs has continued to increase. Advancements in this regard primarily have been made in soil habitats where EPNs are shielded from environmental extremes, but progress has also been made in use of nematodes in above-ground habitats owing to the development of improved protective formulations. Progress has also resulted from advancements in nematode production technology using both in vivo and in vitro systems; novel application methods such as distribution of infected host cadavers; and nematode strain improvement via enhancement and stabilization of beneficial traits. Innovative research has also yielded insights into the fundamentals of EPN biology including major advances in genomics, nematode-bacterial symbiont interactions, ecological relationships, and foraging behavior. Additional research is needed to leverage these basic findings toward direct improvements in microbial control
Novel member of Ras family proteins from Disk Abalone (Haliotis discus discus): Structural profiling and its transcriptional modulation under host pathologic conditions
Among small GTPases, the Ras family proteins capture a remarkable place in dictating cellular proliferation, differentiation and survival in development of an organism. Major members of the Ras family include Ras (H-Ras, K-Ras, N-Ras), Rap1, and Rap2, all of which can act as oncogenes upon mutation. In the present study, a novel Ras family protein (AbRFP) was characterized from Disk Abalone (Haliotis discus discus), an economically important, edible marine gastropod; further analyzing its transcriptional profile in healthy and immune-challenged animals. The full-length cDNA of AbRFP is 2704 bp and it consists of an open reading frame of 552 bp, encoding a 184 amino acid peptide with a calculated molecular mass of ~21 kDa and isoelectric point of 8.63. The amino acid sequence resembles the characteristic features of typical Ras family proteins, including GTP/Mg2+ binding sites and guanine nucleotide exchange factor (GEF) interaction sites, as predicted by the NCBI-conserved domain database server. Phylogenetic study of AbRFP showed the generally accepted relationships, with AbRFP exhibiting highest proximity to a Ras protein from Portuguese oyster. Quantitative real-time PCR detected ubiquitous AbRFP mRNA expression, with strongest levels in muscle along with mantle and the lowest level in hepatopancreas. The AbRFP transcriptional profile in gills of Abalone challenged with Vibrio parahaemolyticus or viral hemorrhagic septicemia virus (VHSV) demonstrated significant up-regulations (p < 0.05) at 12 h and 24 h post-injection (p.i.), respectively. Moreover, significant elevation (p < 0.05) of mRNA expression was detected in hemocytes at 72 h p.i. with V. parahaemolyticus. These findings suggest that AbRFP may play a role under pathological conditions in Disk Abalon
- …
