8 research outputs found
How Polarized Have We Become? A Multimodal Classification of Trump Followers and Clinton Followers
Polarization in American politics has been extensively documented and
analyzed for decades, and the phenomenon became all the more apparent during
the 2016 presidential election, where Trump and Clinton depicted two radically
different pictures of America. Inspired by this gaping polarization and the
extensive utilization of Twitter during the 2016 presidential campaign, in this
paper we take the first step in measuring polarization in social media and we
attempt to predict individuals' Twitter following behavior through analyzing
ones' everyday tweets, profile images and posted pictures. As such, we treat
polarization as a classification problem and study to what extent Trump
followers and Clinton followers on Twitter can be distinguished, which in turn
serves as a metric of polarization in general. We apply LSTM to processing
tweet features and we extract visual features using the VGG neural network.
Integrating these two sets of features boosts the overall performance. We are
able to achieve an accuracy of 69%, suggesting that the high degree of
polarization recorded in the literature has started to manifest itself in
social media as well.Comment: 16 pages, SocInfo 2017, 9th International Conference on Social
Informatic
