2,091 research outputs found

    On the use of variability time-scales as an early classifier of radio transients and variables

    Get PDF
    We have shown previously that a broad correlation between the peak radio luminosity and the variability time-scales, approximately L ~ t^5, exists for variable synchrotron emitting sources and that different classes of astrophysical source occupy different regions of luminosity and time-scale space. Based on those results, we investigate whether the most basic information available for a newly discovered radio variable or transient - their rise and/or decline rate - can be used to set initial constraints on the class of events from which they originate. We have analysed a sample of ~ 800 synchrotron flares, selected from light-curves of ~ 90 sources observed at 5-8 GHz, representing a wide range of astrophysical phenomena, from flare stars to supermassive black holes. Selection of outbursts from the noisy radio light-curves has been done automatically in order to ensure reproducibility of results. The distribution of rise/decline rates for the selected flares is modelled as a Gaussian probability distribution for each class of object, and further convolved with estimated areal density of that class in order to correct for the strong bias in our sample. We show in this way that comparing the measured variability time-scale of a radio transient/variable of unknown origin can provide an early, albeit approximate, classification of the object, and could form part of a suite of measurements used to provide early categorisation of such events. Finally, we also discuss the effect scintillating sources will have on our ability to classify events based on their variability time-scales.Comment: Accepted for publication in MNRA

    Black Hole Mergers and Unstable Circular Orbits

    Get PDF
    We describe recent numerical simulations of the merger of a class of equal mass, non-spinning, eccentric binary black hole systems in general relativity. We show that with appropriate fine-tuning of the initial conditions to a region of parameter space we denote the threshold of immediate merger, the binary enters a phase of close interaction in a near-circular orbit, stays there for an amount of time proportional to logarithmic distance from the threshold in parameter space, then either separates or merges to form a single Kerr black hole. To gain a better understanding of this phenomena we study an analogous problem in the evolution of equatorial geodesics about a central Kerr black hole. A similar threshold of capture exists for appropriate classes of initial conditions, and tuning to threshold the geodesics approach one of the unstable circular geodesics of the Kerr spacetime. Remarkably, with a natural mapping of the parameters of the geodesic to that of the equal mass system, the scaling exponent describing the whirl phase of each system turns out to be quite similar. Armed with this lone piece of evidence that an approximate correspondence might exist between near-threshold evolution of geodesics and generic binary mergers, we illustrate how this information can be used to estimate the cross section and energy emitted in the ultra relativistic black hole scattering problem. This could eventually be of use in providing estimates for the related problem of parton collisions at the Large Hadron Collider in extra dimension scenarios where black holes are produced.Comment: 16 pages, 12 figures; updated to coincide with journal versio

    Radiation from low-momentum zoom-whirl orbits

    Full text link
    We study zoom-whirl behaviour of equal mass, non-spinning black hole binaries in full general relativity. The magnitude of the linear momentum of the initial data is fixed to that of a quasi-circular orbit, and its direction is varied. We find a global maximum in radiated energy for a configuration which completes roughly one orbit. The radiated energy in this case exceeds the value of a quasi-circular binary with the same momentum by 15%. The direction parameter only requires minor tuning for the localization of the maximum. There is non-trivial dependence of the energy radiated on eccentricity (several local maxima and minima). Correlations with orbital dynamics shortly before merger are discussed. While being strongly gauge dependent, these findings are intuitive from a physical point of view and support basic ideas about the efficiency of gravitational radiation from a binary system.Comment: 9 pages, 6 figures, Amaldi8 conference proceedings as publishe

    Reducing orbital eccentricity in binary black hole simulations

    Get PDF
    Binary black hole simulations starting from quasi-circular (i.e., zero radial velocity) initial data have orbits with small but non-zero orbital eccentricities. In this paper the quasi-equilibrium initial-data method is extended to allow non-zero radial velocities to be specified in binary black hole initial data. New low-eccentricity initial data are obtained by adjusting the orbital frequency and radial velocities to minimize the orbital eccentricity, and the resulting (5\sim 5 orbit) evolutions are compared with those of quasi-circular initial data. Evolutions of the quasi-circular data clearly show eccentric orbits, with eccentricity that decays over time. The precise decay rate depends on the definition of eccentricity; if defined in terms of variations in the orbital frequency, the decay rate agrees well with the prediction of Peters (1964). The gravitational waveforms, which contain 8\sim 8 cycles in the dominant l=m=2 mode, are largely unaffected by the eccentricity of the quasi-circular initial data. The overlap between the dominant mode in the quasi-circular evolution and the same mode in the low-eccentricity evolution is about 0.99.Comment: 27 pages, 9 figures; various minor clarifications; accepted to the "New Frontiers" special issue of CQ

    Scalar field collapse in three-dimensional AdS spacetime

    Get PDF
    We describe results of a numerical calculation of circularly symmetric scalar field collapse in three spacetime dimensions with negative cosmological constant. The procedure uses a double null formulation of the Einstein-scalar equations. We see evidence of black hole formation on first implosion of a scalar pulse if the initial pulse amplitude AA is greater than a critical value AA_*. Sufficiently near criticality the apparent horizon radius rAHr_{AH} grows with pulse amplitude according to the formula rAH(AA)0.81r_{AH} \sim (A-A_*)^{0.81}.Comment: 10 pages, 1 figure; references added, to appear in CQG(L

    Ninja data analysis with a detection pipeline based on the Hilbert-Huang Transform

    Full text link
    The Ninja data analysis challenge allowed the study of the sensitivity of data analysis pipelines to binary black hole numerical relativity waveforms in simulated Gaussian noise at the design level of the LIGO observatory and the VIRGO observatory. We analyzed NINJA data with a pipeline based on the Hilbert Huang Transform, utilizing a detection stage and a characterization stage: detection is performed by triggering on excess instantaneous power, characterization is performed by displaying the kernel density enhanced (KD) time-frequency trace of the signal. Using the simulated data based on the two LIGO detectors, we were able to detect 77 signals out of 126 above SNR 5 in coincidence, with 43 missed events characterized by signal to noise ratio SNR less than 10. Characterization of the detected signals revealed the merger part of the waveform in high time and frequency resolution, free from time-frequency uncertainty. We estimated the timelag of the signals between the detectors based on the optimal overlap of the individual KD time-frequency maps, yielding estimates accurate within a fraction of a millisecond for half of the events. A coherent addition of the data sets according to the estimated timelag eventually was used in a characterization of the event.Comment: Accepted for publication in CQG, special issue NRDA proceedings 200

    Simulation of Binary Black Hole Spacetimes with a Harmonic Evolution Scheme

    Full text link
    A numerical solution scheme for the Einstein field equations based on generalized harmonic coordinates is described, focusing on details not provided before in the literature and that are of particular relevance to the binary black hole problem. This includes demonstrations of the effectiveness of constraint damping, and how the time slicing can be controlled through the use of a source function evolution equation. In addition, some results from an ongoing study of binary black hole coalescence, where the black holes are formed via scalar field collapse, are shown. Scalar fields offer a convenient route to exploring certain aspects of black hole interactions, and one interesting, though tentative suggestion from this early study is that behavior reminiscent of "zoom-whirl" orbits in particle trajectories is also present in the merger of equal mass, non-spinning binaries, with appropriately fine-tuned initial conditions.Comment: 16 pages, 14 figures; replaced with published versio

    Generalized harmonic formulation in spherical symmetry

    Get PDF
    In this pedagogically structured article, we describe a generalized harmonic formulation of the Einstein equations in spherical symmetry which is regular at the origin. The generalized harmonic approach has attracted significant attention in numerical relativity over the past few years, especially as applied to the problem of binary inspiral and merger. A key issue when using the technique is the choice of the gauge source functions, and recent work has provided several prescriptions for gauge drivers designed to evolve these functions in a controlled way. We numerically investigate the parameter spaces of some of these drivers in the context of fully non-linear collapse of a real, massless scalar field, and determine nearly optimal parameter settings for specific situations. Surprisingly, we find that many of the drivers that perform well in 3+1 calculations that use Cartesian coordinates, are considerably less effective in spherical symmetry, where some of them are, in fact, unstable.Comment: 47 pages, 15 figures. v2: Minor corrections, including 2 added references; journal version
    corecore