2,091 research outputs found
On the use of variability time-scales as an early classifier of radio transients and variables
We have shown previously that a broad correlation between the peak radio
luminosity and the variability time-scales, approximately L ~ t^5, exists for
variable synchrotron emitting sources and that different classes of
astrophysical source occupy different regions of luminosity and time-scale
space. Based on those results, we investigate whether the most basic
information available for a newly discovered radio variable or transient -
their rise and/or decline rate - can be used to set initial constraints on the
class of events from which they originate. We have analysed a sample of ~ 800
synchrotron flares, selected from light-curves of ~ 90 sources observed at 5-8
GHz, representing a wide range of astrophysical phenomena, from flare stars to
supermassive black holes. Selection of outbursts from the noisy radio
light-curves has been done automatically in order to ensure reproducibility of
results. The distribution of rise/decline rates for the selected flares is
modelled as a Gaussian probability distribution for each class of object, and
further convolved with estimated areal density of that class in order to
correct for the strong bias in our sample. We show in this way that comparing
the measured variability time-scale of a radio transient/variable of unknown
origin can provide an early, albeit approximate, classification of the object,
and could form part of a suite of measurements used to provide early
categorisation of such events. Finally, we also discuss the effect
scintillating sources will have on our ability to classify events based on
their variability time-scales.Comment: Accepted for publication in MNRA
Black Hole Mergers and Unstable Circular Orbits
We describe recent numerical simulations of the merger of a class of equal
mass, non-spinning, eccentric binary black hole systems in general relativity.
We show that with appropriate fine-tuning of the initial conditions to a region
of parameter space we denote the threshold of immediate merger, the binary
enters a phase of close interaction in a near-circular orbit, stays there for
an amount of time proportional to logarithmic distance from the threshold in
parameter space, then either separates or merges to form a single Kerr black
hole. To gain a better understanding of this phenomena we study an analogous
problem in the evolution of equatorial geodesics about a central Kerr black
hole. A similar threshold of capture exists for appropriate classes of initial
conditions, and tuning to threshold the geodesics approach one of the unstable
circular geodesics of the Kerr spacetime. Remarkably, with a natural mapping of
the parameters of the geodesic to that of the equal mass system, the scaling
exponent describing the whirl phase of each system turns out to be quite
similar. Armed with this lone piece of evidence that an approximate
correspondence might exist between near-threshold evolution of geodesics and
generic binary mergers, we illustrate how this information can be used to
estimate the cross section and energy emitted in the ultra relativistic black
hole scattering problem. This could eventually be of use in providing estimates
for the related problem of parton collisions at the Large Hadron Collider in
extra dimension scenarios where black holes are produced.Comment: 16 pages, 12 figures; updated to coincide with journal versio
Radiation from low-momentum zoom-whirl orbits
We study zoom-whirl behaviour of equal mass, non-spinning black hole binaries
in full general relativity. The magnitude of the linear momentum of the initial
data is fixed to that of a quasi-circular orbit, and its direction is varied.
We find a global maximum in radiated energy for a configuration which completes
roughly one orbit. The radiated energy in this case exceeds the value of a
quasi-circular binary with the same momentum by 15%. The direction parameter
only requires minor tuning for the localization of the maximum. There is
non-trivial dependence of the energy radiated on eccentricity (several local
maxima and minima). Correlations with orbital dynamics shortly before merger
are discussed. While being strongly gauge dependent, these findings are
intuitive from a physical point of view and support basic ideas about the
efficiency of gravitational radiation from a binary system.Comment: 9 pages, 6 figures, Amaldi8 conference proceedings as publishe
Reducing orbital eccentricity in binary black hole simulations
Binary black hole simulations starting from quasi-circular (i.e., zero radial
velocity) initial data have orbits with small but non-zero orbital
eccentricities. In this paper the quasi-equilibrium initial-data method is
extended to allow non-zero radial velocities to be specified in binary black
hole initial data. New low-eccentricity initial data are obtained by adjusting
the orbital frequency and radial velocities to minimize the orbital
eccentricity, and the resulting ( orbit) evolutions are compared with
those of quasi-circular initial data. Evolutions of the quasi-circular data
clearly show eccentric orbits, with eccentricity that decays over time. The
precise decay rate depends on the definition of eccentricity; if defined in
terms of variations in the orbital frequency, the decay rate agrees well with
the prediction of Peters (1964). The gravitational waveforms, which contain
cycles in the dominant l=m=2 mode, are largely unaffected by the
eccentricity of the quasi-circular initial data. The overlap between the
dominant mode in the quasi-circular evolution and the same mode in the
low-eccentricity evolution is about 0.99.Comment: 27 pages, 9 figures; various minor clarifications; accepted to the
"New Frontiers" special issue of CQ
Scalar field collapse in three-dimensional AdS spacetime
We describe results of a numerical calculation of circularly symmetric scalar
field collapse in three spacetime dimensions with negative cosmological
constant. The procedure uses a double null formulation of the Einstein-scalar
equations. We see evidence of black hole formation on first implosion of a
scalar pulse if the initial pulse amplitude is greater than a critical
value . Sufficiently near criticality the apparent horizon radius
grows with pulse amplitude according to the formula .Comment: 10 pages, 1 figure; references added, to appear in CQG(L
Ninja data analysis with a detection pipeline based on the Hilbert-Huang Transform
The Ninja data analysis challenge allowed the study of the sensitivity of
data analysis pipelines to binary black hole numerical relativity waveforms in
simulated Gaussian noise at the design level of the LIGO observatory and the
VIRGO observatory. We analyzed NINJA data with a pipeline based on the Hilbert
Huang Transform, utilizing a detection stage and a characterization stage:
detection is performed by triggering on excess instantaneous power,
characterization is performed by displaying the kernel density enhanced (KD)
time-frequency trace of the signal. Using the simulated data based on the two
LIGO detectors, we were able to detect 77 signals out of 126 above SNR 5 in
coincidence, with 43 missed events characterized by signal to noise ratio SNR
less than 10. Characterization of the detected signals revealed the merger part
of the waveform in high time and frequency resolution, free from time-frequency
uncertainty. We estimated the timelag of the signals between the detectors
based on the optimal overlap of the individual KD time-frequency maps, yielding
estimates accurate within a fraction of a millisecond for half of the events. A
coherent addition of the data sets according to the estimated timelag
eventually was used in a characterization of the event.Comment: Accepted for publication in CQG, special issue NRDA proceedings 200
Simulation of Binary Black Hole Spacetimes with a Harmonic Evolution Scheme
A numerical solution scheme for the Einstein field equations based on
generalized harmonic coordinates is described, focusing on details not provided
before in the literature and that are of particular relevance to the binary
black hole problem. This includes demonstrations of the effectiveness of
constraint damping, and how the time slicing can be controlled through the use
of a source function evolution equation. In addition, some results from an
ongoing study of binary black hole coalescence, where the black holes are
formed via scalar field collapse, are shown. Scalar fields offer a convenient
route to exploring certain aspects of black hole interactions, and one
interesting, though tentative suggestion from this early study is that behavior
reminiscent of "zoom-whirl" orbits in particle trajectories is also present in
the merger of equal mass, non-spinning binaries, with appropriately fine-tuned
initial conditions.Comment: 16 pages, 14 figures; replaced with published versio
Generalized harmonic formulation in spherical symmetry
In this pedagogically structured article, we describe a generalized harmonic
formulation of the Einstein equations in spherical symmetry which is regular at
the origin. The generalized harmonic approach has attracted significant
attention in numerical relativity over the past few years, especially as
applied to the problem of binary inspiral and merger. A key issue when using
the technique is the choice of the gauge source functions, and recent work has
provided several prescriptions for gauge drivers designed to evolve these
functions in a controlled way. We numerically investigate the parameter spaces
of some of these drivers in the context of fully non-linear collapse of a real,
massless scalar field, and determine nearly optimal parameter settings for
specific situations. Surprisingly, we find that many of the drivers that
perform well in 3+1 calculations that use Cartesian coordinates, are
considerably less effective in spherical symmetry, where some of them are, in
fact, unstable.Comment: 47 pages, 15 figures. v2: Minor corrections, including 2 added
references; journal version
- …
