326 research outputs found
Eficiência agronômica de fosfato natural reativo na cultura da soja.
O objetivo deste trabalho foi avaliar a eficiência agronômica relativa de uma fonte de fósforo na cultura de soja [Glycine max (L.) Merrill.]. O superfosfato triplo foi a fonte-padrão, e o fosfato natural reativo Arad foi a fonte testada, ambos aplicados em diferentes doses, em área total ou no sulco de semeadura. Em outubro de 2004, o experimento foi instalado em Balsas, MA, em Latossolo Vermelho-Amarelo distrófico, textura argilosa e baixa disponibilidade de fósforo, conduzido com soja cultivar BRS Sambaíba por três safras (2004/2005 a 2006/2007); a terceira safra foi conduzida sob efeito residual das aplicações anteriores. De forma geral, não foram observadas diferenças quanto à localização da fonte-padrão, ao passo que a localização do fosfato natural reativo Arad reduziu significativamente a eficiência. Quando aplicado a lanço, nos dois primeiros cultivos, o fosfato natural reativo Arad resultou em aproximadamente 76% de eficiência agronômica relativa, o que demonstra média viabilidade agronômica. Sob efeito residual, a aplicação localizada do superfosfato triplo resultou em resposta semelhante à verificada com a aplicação anual desta fonte, entretanto, o aumento na eficiência agronômica relativa foi mais acentuado, quando ambas as fontes foram aplicadas a lanço
Shear bands in granular flow through a mixing length model
We discuss the advantages and results of using a mixing-length, compressible
model to account for shear banding behaviour in granular flow. We formulate a
general approach based on two function of the solid fraction to be determined.
Studying the vertical chute flow, we show that shear band thickness is always
independent from flowrate in the quasistatic limit, for Coulomb wall boundary
conditions. The effect of bin width is addressed using the functions developed
by Pouliquen and coworkers, predicting a linear dependence of shear band
thickness by channel width, while literature reports contrasting data. We also
discuss the influence of wall roughness on shear bands. Through a Coulomb wall
friction criterion we show that our model correctly predicts the effect of
increasing wall roughness on the thickness of shear bands. Then a simple
mixing-length approach to steady granular flows can be useful and
representative of a number of original features of granular flow.Comment: submitted to EP
Environmental cues and genes involved in establishment of the superinfective Pf4 phage of Pseudomonas aeruginosa
© 2014 Hui, Mai-Prochnow, Kjelleberg, McDougald and Rice. Biofilm development in Pseudomonas aeruginosa is in part dependent on a filamentous phage, Pf4, which contributes to biofilm maturation, cell death, dispersal and variant formation, e.g., small colony variants (SCVs). These biofilm phenotypes correlate with the conversion of the Pf4 phage into a superinfection (SI) variant that reinfects and kills the prophage carrying host, in contrast to other filamentous phage that normally replicate without killing their host. Here we have investigated the physiological cues and genes that may be responsible for this conversion. Flow through biofilms typically developed SI phage approximately days 4 or 5 of development and corresponded with dispersal. Starvation for carbon or nitrogen did not lead to the development of SI phage. In contrast, exposure of the biofilm to nitric oxide, H2O2 or the DNA damaging agent, mitomycin C, showed a trend of increased numbers of SI phage, suggesting that reactive oxygen or nitrogen species (RONS) played a role in the formation of SI phage. In support of this, mutation of oxyR, the major oxidative stress regulator in P. aeruginosa, resulted in higher level of and earlier superinfection compared to the wild-type (WT). Similarly, inactivation of mutS, a DNA mismatch repair gene, resulted in the early appearance of the SI phage and this was four log higher than the WT. In contrast, loss of recA, which is important for DNA repair and the SOS response, also resulted in a delayed and decreased production of SI phage. Treatments or mutations that increased superinfection also correlated with an increase in the production of morphotypic variants. The results suggest that the accumulation of RONS by the biofilm may result in DNA lesions in the Pf4 phage, leading to the formation of SI phage, which subsequently selects for morphotypic variants, such as SCVs
'Big things in small packages: The genetics of filamentous phage and effects on fitness of their host'
© FEMS 2015. This review synthesizes recent and past observations on filamentous phages and describes how these phages contribute to host phentoypes. For example, the CTXφ phage of Vibrio cholerae encodes the cholera toxin genes, responsible for causing the epidemic disease, cholera. The CTXφ phage can transduce non-toxigenic strains, converting them into toxigenic strains, contributing to the emergence of new pathogenic strains. Other effects of filamentous phage include horizontal gene transfer, biofilm development, motility, metal resistance and the formation of host morphotypic variants, important for the biofilm stress resistance. These phages infect a wide range of Gram-negative bacteria, including deep-sea, pressure-adapted bacteria. Many filamentous phages integrate into the host genome as prophage. In some cases, filamentous phages encode their own integrase genes to facilitate this process, while others rely on host-encoded genes. These differences are mediated by different sets of 'core' and 'accessory' genes, with the latter group accounting for some of the mechanisms that alter the host behaviours in unique ways. It is increasingly clear that despite their relatively small genomes, these phages exert signficant influence on their hosts and ultimately alter the fitness and other behaviours of their hosts
Determination of the Accuracy of Wire Position Sensors
An energy spectrometer has been installed in the LEP accelerator to determine the beam energy with a relative accuracy of 10-4. A precisely calibrated bending magnet is flanked by 6 beam position monitors (BPM). The beam energy is determined by measuring the deflection angle of the LEP beams and the integrated bending field. An accuracy of less than 10-6 m on the beam position is necessary to reach the desired accuracy on the LEP beam energy. Capacitive wire positioning sensors are used to determine the relative mounting stability of each BPM and to calibrate the beam position monitors. Two-dimensional sensors are attached to each side of every BPM support and provide a position measurement with respect to two stretched wires mounted on either side of the LEP beam pipe. The fixing points of each wire are monitored by additional reference sensors. The position information is digitised via a multiplexed high accuracy digital voltmeter and read out continuously during LEP operations. Wire position sensor accuracy was tested in the laboratory with a laser interferometer, while relative accuracy tests are performed in the LEP environment. Systematic effects of synchrotron radiation on the wire position sensor performance were studied
Rheophysics of dense granular materials : Discrete simulation of plane shear flows
We study the steady plane shear flow of a dense assembly of frictional,
inelastic disks using discrete simulation and prescribing the pressure and the
shear rate. We show that, in the limit of rigid grains, the shear state is
determined by a single dimensionless number, called inertial number I, which
describes the ratio of inertial to pressure forces. Small values of I
correspond to the quasi-static regime of soil mechanics, while large values of
I correspond to the collisional regime of the kinetic theory. Those shear
states are homogeneous, and become intermittent in the quasi-static regime.
When I increases in the intermediate regime, we measure an approximately linear
decrease of the solid fraction from the maximum packing value, and an
approximately linear increase of the effective friction coefficient from the
static internal friction value. From those dilatancy and friction laws, we
deduce the constitutive law for dense granular flows, with a plastic Coulomb
term and a viscous Bagnold term. We also show that the relative velocity
fluctuations follow a scaling law as a function of I. The mechanical
characteristics of the grains (restitution, friction and elasticity) have a
very small influence in this intermediate regime. Then, we explain how the
friction law is related to the angular distribution of contact forces, and why
the local frictional forces have a small contribution to the macroscopic
friction. At the end, as an example of heterogeneous stress distribution, we
describe the shear localization when gravity is added.Comment: 24 pages, 19 figure
Analysis of the Pseudoalteromonas tunicata genome reveals properties of a surface-associated life style in the marine environment
Background: Colonisation of sessile eukaryotic host surfaces (e.g. invertebrates and seaweeds) by bacteria is common in the marine environment and is expected to create significant inter-species competition and other interactions. The bacterium Pseudoalteromonas tunicata is a successful competitor on marine surfaces owing primarily to its ability to produce a number of inhibitory molecules. As such P. tunicata has become a model organism for the studies into processes of surface colonisation and eukaryotic host-bacteria interactions. Methodology/Principal Findings: To gain a broader understanding into the adaptation to a surface-associated life-style, we have sequenced and analysed the genome of P. tunicata and compared it to the genomes of closely related strains. We found that the P. tunicata genome contains several genes and gene clusters that are involved in the production of inhibitory compounds against surface competitors and secondary colonisers. Features of P. tunicata's oxidative stress response, iron scavenging and nutrient acquisition show that the organism is well adapted to high-density communities on surfaces. Variation of the P. tunicata genome is suggested by several landmarks of genetic rearrangements and mobile genetic elements (e.g. transposons, CRISPRs, phage). Surface attachment is likely to be mediated by curli, novel pili, a number of extracellular polymers and potentially other unexpected cell surface proteins. The P. tunicata genome also shows a utilisation pattern of extracellular polymers that would avoid a degradation of its recognised hosts, while potentially causing detrimental effects on other host types. In addition, the prevalence of recognised virulence genes suggests that P. tunicata has the potential for pathogenic interactions. Conclusions/Significance: The genome analysis has revealed several physiological features that would provide P. tunciata with competitive advantage against other members of the surface-associated community. We have also identified properties that could mediate interactions with surfaces other than its currently recognised hosts. This together with the detection of known virulence genes leads to the hypothesis that P. tunicata maintains a carefully regulated balance between beneficial and detrimental interactions with a range of host surfaces. © 2008 Thomas et al
Status of the LEP2 Spectrometer Project
The LEP spectrometer has been conceived to provide a determination of the beam energy with a relative accuracy of 10-4 in the LEP2 physics region where insufficient polarisation levels prevent the application of the resonant depolarisation method. The setup consists of a steel bending magnet flanked by a triplet of Beam Position Monitors (BPM) at each side providing a measurement of changes in the bending angle when the beams are accelerated to physics energies. The goal for a 100 ppm relative precision on the beam energy involves a ± 1 micron BPM resolution and the calibration of the dipole bending strength to a 30 ppm accuracy. This paper reports on the results of the commissioning of the Spectrometer during the 1999 LEP Run and on the experience acquired on the behaviour of the several sub-systems with circulating beams
Making the connection: social networks and type 2 diabetes among Black/African American Men: mixed-methods study protocol
This mixed-methods study protocol investigates the role of social networks in Type 2 diabetes (T2D) self-management among Black/African American (B/AA) men, a population disproportionately affected by T2D. The study employs a convergent design, combining quantitative social network analysis with longitudinal qualitative interviews. A nationally representative sample of 1,200 B/AA men with T2D will complete an online survey assessing their social networks, T2D self-management practices, and related psychosocial factors. A subset of 65 participants will engage in semi-structured interviews at two timepoints 6 months apart to explore the formation and evolution of supportive relationships. The study aims to: (1) identify specific aspects of social networks related to T2D self-management adherence, and (2) characterize the formation and evolution of relationships that improve T2D self-management strategies. Quantitative data will be analyzed using multivariate and multilevel regression techniques, while qualitative data will undergo thematic analysis. This comprehensive approach will provide insights into the structure and function of social networks among B/AA men with T2D, potentially informing culturally tailored interventions to improve T2D outcomes in this underserved population. The study’s innovative focus on the broader social context of T2D management among B/AA men has the potential to address health disparities and contribute to more effective strategies for reducing the burden of T2D in this population
- …
