42 research outputs found

    Social–environmental drivers inform strategic management of coral reefs in the Anthropocene

    Get PDF
    Without drastic efforts to reduce carbon emissions and mitigate globalized stressors, tropical coral reefs are in jeopardy. Strategic conservation and management requires identification of the environmental and socioeconomic factors driving the persistence of scleractinian coral assemblages—the foundation species of coral reef ecosystems. Here, we compiled coral abundance data from 2,584 Indo-Pacific reefs to evaluate the influence of 21 climate, social and environmental drivers on the ecology of reef coral assemblages. Higher abundances of framework-building corals were typically associated with: weaker thermal disturbances and longer intervals for potential recovery; slower human population growth; reduced access by human settlements and markets; and less nearby agriculture. We therefore propose a framework of three management strategies (protect, recover or transform) by considering: (1) if reefs were above or below a proposed threshold of >10% cover of the coral taxa important for structural complexity and carbonate production; and (2) reef exposure to severe thermal stress during the 2014–2017 global coral bleaching event. Our findings can guide urgent management efforts for coral reefs, by identifying key threats across multiple scales and strategic policy priorities that might sustain a network of functioning reefs in the Indo-Pacific to avoid ecosystem collapse

    Assessing the potential for tropical cyclone induced sea surface cooling to reduce thermal stress on the world\u27s coral reefs

    Get PDF
    Coral reefs face an uncertain future as rising sea surface temperature (SST) continues to lead to increasingly frequent and intense mass bleaching. At broad spatial scales, tropical cyclone (TC) induced cooling of the upper ocean (SST drops up to 6° C persisting for weeks) reduces thermal stress and accelerates recovery of bleached corals - yet the global prevalence and spatial distribution of this effect remains undocumented and unquantified. A global dataset (1985–2009) of TC wind exposure was constructed and examined against existing thermal stress data to address this. Significant correlations were found between TC activity and the severity of thermal stress at various spatial scales, particularly for Caribbean reefs. From this, it is apparent that TCs play a role in bleaching dynamics at a global scale. However, the prevalence and distribution of this interaction varies by region and requires further examination at finer spatial and temporal scales using actual SST data

    The crystal structure of MoTe<sub>2</sub>

    Full text link

    Long-term dynamics and drivers of coral and macroalgal cover on inshore reefs of the Great Barrier Reef Marine Park

    No full text
    Quantifying the role of biophysical and anthropogenic drivers of coral reef ecosystem processes can inform management strategies that aim to maintain or restore ecosystem structure and productivity. However, few studies have examined the combined effects of multiple drivers, partitioned their impacts, or established threshold values that may trigger shifts in benthic cover. Inshore fringing reefs of the Great Barrier Reef Marine Park (GBRMP) occur in high-sediment, high-nutrient environments and are under increasing pressure from multiple acute and chronic stressors. Despite world-leading management, including networks of no-take marine reserves, relative declines in hard coral cover of 40–50% have occurred in recent years, with localized but persistent shifts from coral to macroalgal dominance on some reefs. Here we use boosted regression tree analyses to test the relative importance of multiple biophysical drivers on coral and macroalgal cover using a long-term (12–18 yr) data set collected from reefs at four island groups. Coral and macroalgal cover were negatively correlated at all island groups, and particularly when macroalgal cover was above 20%. Although reefs at each island group had different disturbance-and-recovery histories, degree heating weeks (DHW) and routine wave exposure consistently emerged as common drivers of coral and macroalgal cover. In addition, different combinations of sea-surface temperature, nutrient and turbidity parameters, exposure to high turbidity (primary) floodwater, depth, grazing fish density, farming damselfish density, and management zoning variously contributed to changes in coral and macroalgal cover at each island group. Clear threshold values were apparent for multiple drivers including wave exposure, depth, and degree heating weeks for coral cover, and depth, degree heating weeks, chlorophyll a, and cyclone exposure for macroalgal cover, however, all threshold values were variable among island groups. Our findings demonstrate that inshore coral reef communities are typically structured by broadscale climatic perturbations, superimposed upon unique sets of local-scale drivers. Although rapidly escalating climate change impacts are the largest threat to coral reefs of the GBRMP and globally, our findings suggest that proactive management actions that effectively reduce chronic stressors at local scales should contribute to improved reef resistance and recovery potential following acute climatic disturbances

    Coral composition and bottom-wave metrics improve understanding of the patchiness of cyclone damage on reefs

    No full text
    Coral reefs are likely to be exposed to more intense cyclones under climate change. Cyclone impacts are spatially highly variable given complex hydrodynamics, and coral-specific sensitivity to wave impacts. Predicting reef vulnerability to cyclones is critical to management but requires high resolution environmental data that are difficult to obtain over broad spatial scales. Using 30m-resolution wave modelling, we tested cyclonic and non-cyclonic wave metrics as predictors of coral damage on 22 reefs after severe cyclone Ita impacted the northern Great Barrier Reef, Australia in 2014. Analyses of coral cover change accounting for the type of coral along a gradient of vulnerability to wave damage (e.g., massive, branching, Acroporids) excluded cyclone-generated surface wave metrics (derived from wave height) as important predictors. Increased bottom stress wave environment (near-bed wave orbital velocity) due to Ita (Ita-Ub) explained spatial patterns of 17% to 46% total coral cover loss only when the initial abundance of Acroporids was accounted for, and only when exceeding 35% cover. Greater coral losses occurred closer to the cyclone path irrespective of coral type. Massive and encrusting corals, however, had losses exacerbated in higher non-cyclonic bottom-wave energy environments (nc-Ub). The effect of community composition on structural vulnerability to wave damage was more important predicting damage that the magnitude of the cyclone-generated waves, especially when reefs are surveyed well beyond where damaging waves are expected to occur. Exposure to Ita-Ub was greater in typically high nc-Ub environments with relatively low cover of the most fragile morphologies explaining why these were the least affected overall. We reveal that the common surface-wave metrics of cyclone intensity may not always be able to predict spatial impacts and conclude that reef vulnerability assessments need to account for chronic wave patterns and differences in community composition in order to provide predictive tools for future conservation and restoration.No Full Tex
    corecore