294 research outputs found
ON THE MULTI-PREFERENCE APPROACH TO EVALUATING OPPORTUNITIES
The purpose of the paper is to provide a general framework for analyzing ""preference for opportunities."" Based on two simple axioms a fundamental result due to Kreps is used in order to represent rankings of opportunity sets in terms of multiple preferences. The paper provides several refinements of the basic representation theorem. In particular, a condition of ""closedness under compromise"" is suggested in order to distinguish the flexibility interpretation of the model from normative interpretations which play a crucial role in justifying the intrinsic value of opportunities. Moreover, the paper clarifies the link between the multiple preference approach and the ""choice function"" approach to evaluating opportunities. In particular, it is shown how the well-known Aizerman/Malishevski result on rationalizability of choice functions can be obtained as a corollary from the more general multiple preference representation of a ranking of opportunity sets.
Die Homöomorphie der geometrischen Realisierungen einer semisimplizialen Menge und ihrer Normalunterteilung
Protist diversity on a nature reserve in NW England − with particular reference to their role in soil biogenic silicon pools
Soil protists play fundamental roles in many earth system processes, yet we are only beginning to understand the true diversity of the organisms involved. In this study we used conventional (microscopy-based) methods to characterise the diversity and estimate protist population sizes in soils from a variety of distinct habitats within Mere Sands Wood nature reserve in NW England. We produced population size data for over ninety soil protists belonging to two major eukaryotic functional groups: testate amoebae (TA) and diatoms, adding substantial ‘cryptic diversity’ to the nature reserves recorded biota. From these population size data we estimated relative contributions of TA and diatoms to soil biogenic silicon (BSi) pools and found significant correlations between taxon richness and the TA and diatom Si pool. This could indicate that protist functional diversity can influence terrestrial BSi pools, especially in early successional plant communities where TA and diatoms can potentially increase Si mineralisation and/or create Si ‘hot spots’ and hence, the biological availability of this element for subsequent plant uptake. TA were particularly abundant in mor humus type soils further supporting the idea that they could be important players in nutrient cycling in such soils. Overall, we demonstrate this is a useful approach in order to start to attempt to estimate the role of protists in the Si cycle and other ecological processes
Momentum diffusion for coupled atom-cavity oscillators
It is shown that the momentum diffusion of free-space laser cooling has a
natural correspondence in optical cavities when the internal state of the atom
is treated as a harmonic oscillator. We derive a general expression for the
momentum diffusion which is valid for most configurations of interest: The atom
or the cavity or both can be probed by lasers, with or without the presence of
traps inducing local atomic frequency shifts. It is shown that, albeit the
(possibly strong) coupling between atom and cavity, it is sufficient for
deriving the momentum diffusion to consider that the atom couples to a mean
cavity field, which gives a first contribution, and that the cavity mode
couples to a mean atomic dipole, giving a second contribution. Both
contributions have an intuitive form and present a clear symmetry. The total
diffusion is the sum of these two contributions plus the diffusion originating
from the fluctuations of the forces due to the coupling to the vacuum modes
other than the cavity mode (the so called spontaneous emission term). Examples
are given that help to evaluate the heating rates induced by an optical cavity
for experiments operating at low atomic saturation. We also point out
intriguing situations where the atom is heated although it cannot scatter
light.Comment: More information adde
The Antithesis: Challenging the Current Execution of University Thesis via the Exquisite Capriccio and Grand Tour
This thesis challenges the current set of norms, definitions and execution of present university thesis via a speculative extension and practice of the grand tour and travel journal through a montaging of mediums, experiences, methods, and techniques
Equivariant cohomology and analytic descriptions of ring isomorphisms
In this paper we consider a class of connected closed -manifolds with a
non-empty finite fixed point set, each of which is totally non-homologous
to zero in (or -equivariantly formal), where . With the
help of the equivariant index, we give an explicit description of the
equivariant cohomology of such a -manifold in terms of algebra, so that we
can obtain analytic descriptions of ring isomorphisms among equivariant
cohomology rings of such -manifolds, and a necessary and sufficient
condition that the equivariant cohomology rings of such two -manifolds are
isomorphic. This also leads us to analyze how many there are equivariant
cohomology rings up to isomorphism for such -manifolds in 2- and
3-dimensional cases.Comment: 20 pages, updated version with two references adde
Nuclear matrix element for two neutrino double beta decay from 136Xe
The nuclear matrix element for the two neutrino double beta decay (DBD) of
136Xe was evaluated by FSQP (Fermi Surface Quasi Particle model), where
experimental GT strengths measured by the charge exchange reaction and those by
the beta decay rates were used. The 2 neutrino DBD matrix element is given by
the sum of products of the single beta matrix elements via low-lying (Fermi
Surface) quasi-particle states in the intermediate nucleus. 136Xe is the
semi-magic nucleus with the closed neutron-shell, and the beta + transitions
are almost blocked. Thus the 2 neutrino DBD is much suppressed. The evaluated 2
neutrino DBD matrix element is consistent with the observed value.Comment: 7 pages 6 figure
Quantitative and qualitative biogenic silicon analyses combining modern microscopical and spectroscopical methods
Numerous organisms comprising pro- and eukaryotes are evolutionarily adapted to synthesize siliceous structures (biosilicification). In terrestrial biogeosystems biogenic silicon (BSi) accumulation of phytogenic (BSi synthesized by plants), protistic (diatoms and testate amoeba), microbial (bacteria and fungi) and zoogenic (sponges) origin results in formation of corresponding BSi pools. Accumulation and recycling of BSi in terrestrial ecosystems influence fluxes of dissolved Si from the continents to the oceans, thus act as a filter in the global Si cycle. Although the biogenic control mechanism especially of phytogenic Si pools (phytoliths) has been generally recognized since decades quantitative information on other terrestrial BSi pools is rare. Additionally, information on physicochemical properties of the various siliceous structures are needed to better understand their dissolution kinetics. We used modern microscopical (laser scanning microscopy, LSM; Scanning electron microscopy with coupled energy-dispersive X-ray spectroscopy, SEM-EDX) and spectroscopical (micro-Fourier transform infrared spectroscopy, micro-FTIR) methods for quantitative and qualitative analyses of BSi structures. LSM was used to measure volumes and surface areas of BSi structures and corresponding surface-area-to-volume ratios (A:V ratios) were calculated as an indicator for the resistibility of these siliceous structures against dissolution. Volume measurements were also used for the quantification of BSi pools by multiplication of corresponding volumes with BSi density. SEM-EDX analyses provided information on the elemental composition of different BSi structures and with the help of micro-FTIR we were able to gain specific information about chemical bonding and molecular structures of BSi. These information will help us to understand in detail dissolution kinetics of various siliceous structures, thus their role in Si cycling
- …
