489 research outputs found
The polarization signature of photospheric magnetic fields in 3D MHD simulations and observations at disk center
Before using 3D MHD simulations of the solar photosphere in the determination
of elemental abundances, one has to ensure that the correct amount of magnetic
flux is present in the simulations. The presence of magnetic flux modifies the
thermal structure of the solar photosphere, which affects abundance
determinations and the solar spectral irradiance. We compare the polarization
signals in disk-center observations of the solar photosphere in quiet-Sun
regions with those in Stokes spectra computed on the basis of 3D MHD
simulations having average magnetic flux densities of about 20, 56, 112 and 224
G. This approach allows us to find the simulation run that best matches the
observations. The observations were taken with the Hinode SP, TIP, POLIS and
the GFPI, respectively. We determine characteristic quantities of full Stokes
profiles in a few photospheric spectral lines in the visible (630 nm) and
near-infrared (1083 and 1565 nm). We find that the appearance of abnormal
granulation in intensity maps of degraded simulations can be traced back to an
initially regular granulation pattern with numerous bright points in the
intergranular lanes before the spatial degradation. The linear polarization
signals in the simulations are almost exclusively related to canopies of strong
magnetic flux concentrations and not to transient events of magnetic flux
emergence. We find that the average vertical magnetic flux density in the
simulation should be less than 50 G to reproduce the observed polarization
signals in the quiet Sun internetwork. A value of about 35 G gives the best
match across the SP, TIP, POLIS and GFPI observations.Comment: 12 pages, 11 figures; accepted for publication in Ap
Spectroscopy at the solar limb: II. Are spicules heated to coronal temperatures ?
Spicules of the so-called type II were suggested to be relevant for coronal
heating because of their ubiquity on the solar surface and their eventual
extension into the corona. We investigate whether solar spicules are heated to
transition-region or coronal temperatures and reach coronal heights (>6 Mm)
using multi-wavelength observations of limb spicules in different chromospheric
spectral lines (Ca II H, Hepsilon, Halpha, Ca II IR at 854.2 nm, He I at 1083
nm). We determine the line width of individual spicules and throughout the
field of view and estimate the maximal height that different types of off-limb
features reach. We derive estimates of the kinetic temperature and the
non-thermal velocity from the line width of spectral lines from different
chemical elements. We find that most regular spicules reach a maximal height of
about 6 Mm above the solar limb. The majority of features found at larger
heights are irregularly shaped with a significantly larger lateral extension
than spicules. Both individual and average line profiles in all spectral lines
show a decrease in their line width with height above the limb with very few
exceptions. Both the kinetic temperature and the non-thermal velocity decrease
with height above the limb. We find no indications that the spicules in our
data reach coronal heights or transition-region or coronal temperatures.Comment: Accepted for publication in Solar Physics, 52 pages, 32 figure
Thermodynamic fluctuations in solar photospheric three-dimensional convection simulations and observations
Numerical 3D radiative (M)HD simulations of solar convection are used to
understand the physical properties of the solar photosphere. To validate this
approach, it is important to check that no excessive thermodynamic fluctuations
arise as a consequence of the partially incomplete treatment of radiative
transfer. We investigate the realism of 3D convection simulations carried out
with the Stagger code. We compared the characteristic properties of several
spectral lines in solar disc centre observations with spectra synthesized from
the simulations. We degraded the synthetic spectra to the spatial resolution of
the observations using the continuum intensity distribution. We estimated the
necessary spectral degradation by comparing atlas spectra with averaged
observed spectra. In addition to deriving a set of line parameters directly, we
used the SIR code to invert the spectra. Most of the line parameters from the
observational data are matched well by the degraded simulation spectra. The
inversions predict a macroturbulent velocity below 10 m/s for the simulation at
full spatial resolution, whereas they yield ~< 1000 m/s at a spatial resolution
of 0.3". The temperature fluctuations in the inversion of the degraded
simulation do not exceed those from the observational data (of the order of
100-200 K rms for -2<log tau<-0.5). The comparison of line parameters in
spatially averaged profiles with the averaged values of line parameters in
spatially resolved profiles indicates a significant change of (average) line
properties at a spatial scale between 0.13" and 0.3". Up to a spatial
resolution of 0.3", we find no indications of the presence of excessive
thermodynamic fluctuations in the 3D HD simulation. To definitely confirm that
simulations without spatial degradation contain fully realistic thermodynamic
fluctuations requires observations at even better spatial resolution.Comment: 21 pages, 15 figures + 2 pages Appendix, accepted for publication in
A&A; v2 version: corrected for an error in the calculation of stray-light
estimates, for details see the Corrigendum to A&A, 2013, 557, 109 (DOI:
10.1051/0004-6361/201321596). Corrected text and numbers are in bold font.
Apart from the stray-light estimates, nothing in the rest of the paper was
affected by the erro
3D photospheric velocity field of a Supergranular cell
We investigate the plasma flow properties inside a Supergranular (SG) cell,
in particular its interaction with small scale magnetic field structures. The
SG cell has been identified using the magnetic network (CaII wing brightness)
as proxy, applying the Two-Level Structure Tracking (TST) to high spatial,
spectral and temporal resolution observations obtained by IBIS. The full 3D
velocity vector field for the SG has been reconstructed at two different
photospheric heights. In order to strengthen our findings, we also computed the
mean radial flow of the SG by means of cork tracing. We also studied the
behaviour of the horizontal and Line of Sight plasma flow cospatial with
cluster of bright CaII structures of magnetic origin to better understand the
interaction between photospheric convection and small scale magnetic features.
The SG cell we investigated seems to be organized with an almost radial flow
from its centre to the border. The large scale divergence structure is probably
created by a compact region of constant up-flow close to the cell centre. On
the edge of the SG, isolated regions of strong convergent flow are nearby or
cospatial with extended clusters of bright CaII wing features forming the knots
of the magnetic network.Comment: 7 pages, submitted to A&A, referee's comments include
How Digital Are the Digital Humanities? An Analysis of Two Scholarly Blogging Platforms
In this paper we compare two academic networking platforms, HASTAC and Hypotheses, to show the distinct ways in which they serve specific communities in the Digital Humanities (DH) in different national and disciplinary contexts. After providing background information on both platforms, we apply co-word analysis and topic modeling to show thematic similarities and differences between the two sites, focusing particularly on how they frame DH as a new paradigm in humanities research. We encounter a much higher ratio of posts using humanities-related terms compared to their digital counterparts, suggesting a one-way dependency of digital humanities-related terms on the corresponding unprefixed labels. The results also show that the terms digital archive, digital literacy, and digital pedagogy are relatively independent from the respective unprefixed terms, and that digital publishing, digital libraries, and digital media show considerable cross-pollination between the specialization and the general noun. The topic modeling reproduces these findings and reveals further differences between the two platforms. Our findings also indicate local differences in how the emerging field of DH is conceptualized and show dynamic topical shifts inside these respective contexts
The GREGOR Fabry-P\'erot Interferometer
The GREGOR Fabry-P\'erot Interferometer (GFPI) is one of three first-light
instruments of the German 1.5-meter GREGOR solar telescope at the Observatorio
del Teide, Tenerife, Spain. The GFPI uses two tunable etalons in collimated
mounting. Thanks to its large-format, high-cadence CCD detectors with
sophisticated computer hard- and software it is capable of scanning spectral
lines with a cadence that is sufficient to capture the dynamic evolution of the
solar atmosphere. The field-of-view (FOV) of 50" x 38" is well suited for quiet
Sun and sunspot observations. However, in the vector spectropolarimetric mode
the FOV reduces to 25" x 38". The spectral coverage in the spectroscopic mode
extends from 530-860 nm with a theoretical spectral resolution R of about
250,000, whereas in the vector spectropolarimetric mode the wavelength range is
at present limited to 580-660 nm. The combination of fast narrow-band imaging
and post-factum image restoration has the potential for discovery science
concerning the dynamic Sun and its magnetic field at spatial scales down to
about 50 km on the solar surface.Comment: 14 pages, 17 figures, 4 tables; pre-print of AN 333, p.880-893, 2012
(AN special issue to GREGOR
Stray-light contamination and spatial deconvolution of slit-spectrograph observations
Stray light caused by scattering on optical surfaces and in the Earth's
atmosphere degrades the spatial resolution of observations. We study the
contribution of stray light to the two channels of POLIS. We test the
performance of different methods of stray-light correction and spatial
deconvolution to improve the spatial resolution post-facto. We model the stray
light as having two components: a spectrally dispersed component and a
component of parasitic light caused by scattering inside the spectrograph. We
use several measurements to estimate the two contributions: observations with a
(partly) blocked FOV, a convolution of the FTS spectral atlas, imaging in the
pupil plane, umbral profiles, and spurious polarization signal in telluric
lines. The measurements allow us to estimate the spatial PSF of POLIS and the
main spectrograph of the German VTT. We use the PSF for a deconvolution of both
spectropolarimetric data and investigate the effect on the spectra. The
parasitic contribution can be directly and accurately determined for POLIS,
amounting to about 5%. We estimate a lower limit of about 10% across the full
FOV for the dispersed stray light. In quiet Sun regions, the stray-light level
from the close surroundings (d< 2") of a given spatial point is about 20%. The
stray light reduces to below 2% at a distance of 20" from a lit area for both
POLIS and the main spectrograph. A two-component model of the stray-light
contributions seems to be sufficient for a basic correction of observed
spectra. The instrumental PSF obtained can be used to model the off-limb stray
light, to determine the stray-light contamination accurately for observation
targets with large spatial intensity gradients such as sunspots, and also
allows one to improve the spatial resolution of observations post-facto.Comment: 14 pages, 16 figures, accepted by A&A. Version V2 revised for
language editin
A retrospective of the GREGOR solar telescope in scientific literature
In this review, we look back upon the literature, which had the GREGOR solar
telescope project as its subject including science cases, telescope subsystems,
and post-focus instruments. The articles date back to the year 2000, when the
initial concepts for a new solar telescope on Tenerife were first presented at
scientific meetings. This comprehensive bibliography contains literature until
the year 2012, i.e., the final stages of commissioning and science
verification. Taking stock of the various publications in peer-reviewed
journals and conference proceedings also provides the "historical" context for
the reference articles in this special issue of Astronomische
Nachrichten/Astronomical Notes.Comment: 6 pages, 2 color figures, this is the pre-peer reviewed version of
Denker et al. 2012, Astron. Nachr. 333, 81
The local structure of molecular reaction intermediates at surfaces
A critical review is presented of the results of (experimental) quantitative structural studies of molecular reaction intermediates at surfaces; i.e. molecular species that do not exist naturally in the gas phase and, in most cases, are implicated in surface catalytic processes. A brief review of the main experimental methods that have contributed to this area is followed by a summary of the main results. Investigated species include: carboxylates, RCOO– (particularly formate, but also deprotonated amino acids); methoxy, CH3O–; carbonate, CO3; ethylidyne, CH3C–; NHx and SOx species; cyanide, CN. As far as possible in the limited range of systems studied, a few general trends are identified
- …
