18,104 research outputs found
The NASA Lewis large wind turbine program
The program is directed toward development of the technology for safe, reliable, environmentally acceptable large wind turbines that have the potential to generate a significant amount of electricity at costs competitive with conventional electric generation systems. In addition, these large wind turbines must be fully compatible with electric utility operations and interface requirements. Advances are made by gaining a better understanding of the system design drivers, improvements in the analytical design tools, verification of design methods with operating field data, and the incorporation of new technology and innovative designs. An overview of the program activities is presented and includes results from the first and second generation field machines (Mod-OA, -1, and -2), the design phase of the third generation wind turbine (Mod-5) and the advanced technology projects. Also included is the status of the Department of Interior WTS-4 machine
Diffraction-limited CCD imaging with faint reference stars
By selecting short exposure images taken using a CCD with negligible readout
noise we obtained essentially diffraction-limited 810 nm images of faint
objects using nearby reference stars brighter than I=16 at a 2.56 m telescope.
The FWHM of the isoplanatic patch for the technique is found to be 50
arcseconds, providing ~20% sky coverage around suitable reference stars.Comment: 4 page letter accepted for publication in Astronomy and Astrophysic
Large wind turbines: A utility option for the generation of electricity
The wind resource is such that wind energy generation has the potential to save 6-7 quads of energy nationally. Thus, the Federal Government is sponsoring and encouraging the development of cost effective and reliable wind turbines. One element of the Federal Wind Energy Programs, Large Horizontal Axis Wind Turbine Development, is managed by the NASA Lewis Research Center for the Department of Energy. There are several ongoing wind system development projects oriented primarily toward utility application within this program element. In addition, a comprehensive technology program supporting the wind turbine development projects is being conducted. An overview is presented of the NASA activities with emphasis on application of large wind turbines for generation of electricity by utility systems
Functional design for operational earth resources ground data processing
The author has identified the following significant results. Study emphasis was on developing a unified concept for the required ground system, capable of handling data from all viable acquisition platforms and sensor groupings envisaged as supporting operational earth survey programs. The platforms considered include both manned and unmanned spacecraft in near earth orbit, and continued use of low and high altitude aircraft. The sensor systems include both imaging and nonimaging devices, operated both passively and actively, from the ultraviolet to the microwave regions of the electromagnetic spectrum
Large wind turbines: A utility option for the generation of electricity
The economic and technical potential of wind energy in the United States is discussed. Particular attention is given to the status of wind turbine operational experience as well as the environmental posture of the technology
Reentrant nu = 1 quantum Hall state in a two-dimensional hole system
We report the observation of a reentrant quantum Hall state at the Landau
level filling factor nu = 1 in a two-dimensional hole system confined to a
35-nm-wide (001) GaAs quantum well. The reentrant behavior is characterized by
a weakening and eventual collapse of the nu = 1 quantum Hall state in the
presence of a parallel magnetic field component B||, followed by a
strengthening and reemergence as B|| is further increased. The robustness of
the nu = 1 quantum Hall state during the transition depends strongly on the
charge distribution symmetry of the quantum well, while the magnitude of B||
needed to invoke the transition increases with the total density of the system
Nuclear Security Applications of Antineutrino Detectors: Current Capabilities and Future Prospects
Antineutrinos are electrically neutral, nearly massless fundamental particles
produced in large numbers in the cores of nuclear reactors and in nuclear
explosions. In the half century since their discovery, major advances in the
understanding of their properties, and in detector technology, have opened the
door to a new discipline: Applied Antineutrino Physics. Because antineutrinos
are inextricably linked to the process of nuclear fission, many applications of
interest are in nuclear nonproliferation. This white paper presents a
comprehensive survey of applied antineutrino physics relevant for
nonproliferation, summarizes recent advances in the field, describes the
overlap of this nascent discipline with other ongoing fundamental and applied
antineutrino research, and charts a course for research and development for
future applications. It is intended as a resource for policymakers,
researchers, and the wider nuclear nonproliferation community.Comment: This is a white paper on nonproliferation applications of
antineutrino detectors. It will be cross posted to Physics and Society under
the Physics sectio
The Australian Incident Monitoring Study in Intensive Care: AIMS-ICU. The development and evaluation of an incident reporting system in intensive care
Publisher's copy made available with the permission of the publisher © 1996 Australian Society of AnaesthetistsIntensive care units are complex, dynamic patient management environments. Incidents and accidents can be caused by human error, by problems inherent in complex systems, or by a combination of these. Study objectives were to develop and evaluate an incident reporting system. A report form was designed eliciting a description of the incident, contextual information and contributing factors. Staff group sessions using open-ended questions, observations in the workplace and a review of earlier narratives were used to develop the report form. Three intensive care units participated in a two-month evaluation study. Feedback questionnaires were used to assess staff attitudes and understanding, project design and organization. These demonstrated a positive attitude and good understanding by more than 90% participants. Errors in communication, technique, problem recognition and charting were the predisposing factors most commonly chosen in the 128 incidents reported. It was concluded that incident monitoring may be a suitable technique for improving patient safety in intensive care.U. Beckman, L.F. West, G.J. Groombridge, I. Baldwin, G.K. Hart, D.G. Clayton, R.K. Webb, W.B. Runcima
- …
