468 research outputs found

    Combining frequency and time domain approaches to systems with multiple spike train input and output

    Get PDF
    A frequency domain approach and a time domain approach have been combined in an investigation of the behaviour of the primary and secondary endings of an isolated muscle spindle in response to the activity of two static fusimotor axons when the parent muscle is held at a fixed length and when it is subjected to random length changes. The frequency domain analysis has an associated error process which provides a measure of how well the input processes can be used to predict the output processes and is also used to specify how the interactions between the recorded processes contribute to this error. Without assuming stationarity of the input, the time domain approach uses a sequence of probability models of increasing complexity in which the number of input processes to the model is progressively increased. This feature of the time domain approach was used to identify a preferred direction of interaction between the processes underlying the generation of the activity of the primary and secondary endings. In the presence of fusimotor activity and dynamic length changes imposed on the muscle, it was shown that the activity of the primary and secondary endings carried different information about the effects of the inputs imposed on the muscle spindle. The results presented in this work emphasise that the analysis of the behaviour of complex systems benefits from a combination of frequency and time domain methods

    Polynomial Cointegration among Stationary Processes with Long Memory

    Get PDF
    n this paper we consider polynomial cointegrating relationships among stationary processes with long range dependence. We express the regression functions in terms of Hermite polynomials and we consider a form of spectral regression around frequency zero. For these estimates, we establish consistency by means of a more general result on continuously averaged estimates of the spectral density matrix at frequency zeroComment: 25 pages, 7 figures. Submitted in August 200

    Nonparametric directionality measures for time series and point process data

    Get PDF
    The need to determine the directionality of interactions between neural signals is a key requirement for analysis of multichannel recordings. Approaches most commonly used are parametric, typically relying on autoregressive models. A number of concerns have been expressed regarding parametric approaches, thus there is a need to consider alternatives. We present an alternative nonparametric approach for construction of directionality measures for bivariate random processes. The method combines time and frequency domain representations of bivariate data to decompose the correlation by direction. Our framework generates two sets of complementary measures, a set of scalar measures, which decompose the total product moment correlation coefficient summatively into three terms by direction and a set of functions which decompose the coherence summatively at each frequency into three terms by direction: forward direction, reverse direction and instantaneous interaction. It can be undertaken as an addition to a standard bivariate spectral and coherence analysis, and applied to either time series or point-process (spike train) data or mixtures of the two (hybrid data). In this paper, we demonstrate application to spike train data using simulated cortical neurone networks and application to experimental data from isolated muscle spindle sensory endings subject to random efferent stimulation

    Gridded and direct Epoch of Reionisation bispectrum estimates using the Murchison Widefield Array

    Full text link
    We apply two methods to estimate the 21~cm bispectrum from data taken within the Epoch of Reionisation (EoR) project of the Murchison Widefield Array (MWA). Using data acquired with the Phase II compact array allows a direct bispectrum estimate to be undertaken on the multiple redundantly-spaced triangles of antenna tiles, as well as an estimate based on data gridded to the uvuv-plane. The direct and gridded bispectrum estimators are applied to 21 hours of high-band (167--197~MHz; zz=6.2--7.5) data from the 2016 and 2017 observing seasons. Analytic predictions for the bispectrum bias and variance for point source foregrounds are derived. We compare the output of these approaches, the foreground contribution to the signal, and future prospects for measuring the bispectra with redundant and non-redundant arrays. We find that some triangle configurations yield bispectrum estimates that are consistent with the expected noise level after 10 hours, while equilateral configurations are strongly foreground-dominated. Careful choice of triangle configurations may be made to reduce foreground bias that hinders power spectrum estimators, and the 21~cm bispectrum may be accessible in less time than the 21~cm power spectrum for some wave modes, with detections in hundreds of hours.Comment: 19 pages, 10 figures, accepted for publication in PAS

    On directed information theory and Granger causality graphs

    Full text link
    Directed information theory deals with communication channels with feedback. When applied to networks, a natural extension based on causal conditioning is needed. We show here that measures built from directed information theory in networks can be used to assess Granger causality graphs of stochastic processes. We show that directed information theory includes measures such as the transfer entropy, and that it is the adequate information theoretic framework needed for neuroscience applications, such as connectivity inference problems.Comment: accepted for publications, Journal of Computational Neuroscienc

    Revealing Real-Time Emotional Responses: a Personalized Assessment based on Heartbeat Dynamics

    Get PDF
    Emotion recognition through computational modeling and analysis of physiological signals has been widely investigated in the last decade. Most of the proposed emotion recognition systems require relatively long-time series of multivariate records and do not provide accurate real-time characterizations using short-time series. To overcome these limitations, we propose a novel personalized probabilistic framework able to characterize the emotional state of a subject through the analysis of heartbeat dynamics exclusively. The study includes thirty subjects presented with a set of standardized images gathered from the international affective picture system, alternating levels of arousal and valence. Due to the intrinsic nonlinearity and nonstationarity of the RR interval series, a specific point-process model was devised for instantaneous identification considering autoregressive nonlinearities up to the third-order according to the Wiener-Volterra representation, thus tracking very fast stimulus-response changes. Features from the instantaneous spectrum and bispectrum, as well as the dominant Lyapunov exponent, were extracted and considered as input features to a support vector machine for classification. Results, estimating emotions each 10 seconds, achieve an overall accuracy in recognizing four emotional states based on the circumplex model of affect of 79.29%, with 79.15% on the valence axis, and 83.55% on the arousal axis

    Revisiting mortality deceleration patterns in a gamma-Gompertz-Makeham framework

    Get PDF
    We calculate life-table aging rates (LARs) for overall mortality by estimating a gamma-Gompertz-Makeham (G GM) model and taking advantage of LAR’s parametric representation by Vaupel and Zhang [34]. For selected HMD countries, we study how the evolution of estimated LAR patterns could explain observed 1) longevity dynamics, and 2) mortality improvement or deterioration at different ages. Surprisingly, the age of mortality deceleration x showed almost no correlation with a number of longevity measures apart from e0. In addition, as mortality concentrates at older ages with time, its characteristic bell-shaped pattern becomes more pronounced. Moreover, in a GGM framework, we identify the impact of senescent mortality on shape of the rate of population aging. We also find evidence for a strong relationship between x and the statistically significant curvilinear changes in the evolution of e0 over time. Finally, model-based LARs appear to be consistent with point b) of the “heterogeneity hypothesis” [12]: mortality deceleration, due to selection effects, should shift to older ages as the level of total adult mortality declines

    Large scale dynamics of the Persistent Turning Walker model of fish behavior

    Get PDF
    International audienceThis paper considers a new model of individual displacement, based on fish motion, the so-called Persistent Turning Walker (PTW) model, which involves an Ornstein-Uhlenbeck process on the curvature of the particle trajectory. The goal is to show that its large time and space scale dynamics is of diffusive type, and to provide an analytic expression of the diffusion coefficient. Two methods are investigated. In the first one, we compute the large time asymptotics of the variance of the individual stochastic trajectories. The second method is based on a diffusion approximation of the kinetic formulation of these stochastic trajectories. The kinetic model is a Fokker-Planck type equation posed in an extended phase-space involving the curvature among the kinetic variables. We show that both methods lead to the same value of the diffusion constant. We present some numerical simulations to illustrate the theoretical results

    Estimation in a Competing Risks Proportional Hazards Model Under Length-biased Sampling With Censoring

    Get PDF
    International audienceWhat population does the sample represent? The answer to this question is of crucial importance when estimating a survivor function in duration studies. As is well-known, in a stationary population, survival data obtained from a cross-sectional sample taken from the population at time t0t_0 represents not the target density f(t)f(t) but its length-biased version proportional to tf(t)tf(t), for t>0t>0. The problem of estimating survivor function from such length-biased samples becomes more complex, and interesting, in presence of competing risks and censoring. This paper lays out a sampling scheme related to a mixed Poisson process and develops nonparametric estimators of the survivor function of the target population assuming that the two independent competing risks have proportional hazards. Two cases are considered: with and without independent consoring before length biased sampling. In each case, the weak convergence of the process generated by the proposed estimator is proved. A well-known study of the duration in power for political leaders is used to illustrate our results. Finally, a simulation study is carried out in order to assess the finite sample behaviour of our estimators

    Feasibility study of parameter estimation of random sampling jitter using the bispectrum

    Full text link
    An actual sampling process can be modeled as a random process, which consists of the regular (uniform) deterministic sampling process plus an error in the sampling times which constitutes a zero-mean noise (the jitter). In this paper we discuss the problem of estimating the jitter process. By assuming that the jitter process is an i.i.d. one, with standard deviation that is small compared to the regular sampling time, we show that the variance of the jitter process can be estimated from the n th order spectrum of the sampled data, n =2, 3, i.e., the jitter variance can be extracted from the 2nd-order spectrum or the 3rd-order spectrum (the bispectrum) of the sampled data, provided the continuous signal spectrum is known. However when the signal skewness exceeds a certain level, the potential performance of the bispectrum-based estimation is better than that of the spectrum-based estimation. Moreover, the former can also provide jitter variance estimates when the continuous signal spectrum is unknown while the latter cannot. This suggests that the bispectrum of the sampled data is potentially better for estimating any parameter of the sampling jitter process, once the signal skewness is sufficiently large.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43577/1/34_2005_Article_BF01183740.pd
    corecore