10,258 research outputs found

    The Nature of the Peculiar Virgo Cluster Galaxies NGC 4064 and NGC 4424

    Full text link
    We present a detailed study of the peculiar HI-deficient Virgo cluster spiral galaxies NGC 4064 and NGC 4424, using 12^{12}CO 1-0 interferometry, optical imaging and integral-field spectroscopic observations, in order to learn what type of environmental interactions have afected these galaxies. Optical imaging reveals that NGC 4424 has a strongly disturbed stellar disk, with banana-shaped isophotes and shells. NGC 4064, which lies in the cluster outskirts, possesses a relatively undisturbed outer stellar disk and a central bar. In both galaxies H-alpha emission is confined to the central kiloparsec. CO observations reveal bilobal molecular gas morphologies, with H-alpha emission peaking inside the CO lobes, implying a time sequence in the star formation process.Gas kinematics reveals strong bar-like non-circular motions in the molecular gas in both galaxies, suggesting that the material is radially infalling. In NGC 4064 the stellar kinematics reveal strong bar-like non-circular motions in the central 1 kpc. On the other hand, NGC 4424 has extremely modest stellar rotation velocities (Vmax ~ 30 km s-1), and stars are supported by random motions as far out as we can measure it. The observations suggest that the peculiarities of NGC 4424 are the result of an intermediate-mass merger plus ram pressure stripping. In the case of NGC 4064, the evidence suggests an already stripped "truncated/normal" galaxy that recently suffered a minor merger or tidal interaction with another galaxy. We propose that galaxies with "truncated/compact" H-alpha morphologies such as these are the result of the independent effects of ram pressure stripping, which removes gas from the outer disk, and gravitational interactions such as mergers, which heat stellar disks, drive gas to the central kpc and increase the central mass concentrations.Comment: 42 pages, 21 figure

    On Security and Sparsity of Linear Classifiers for Adversarial Settings

    Full text link
    Machine-learning techniques are widely used in security-related applications, like spam and malware detection. However, in such settings, they have been shown to be vulnerable to adversarial attacks, including the deliberate manipulation of data at test time to evade detection. In this work, we focus on the vulnerability of linear classifiers to evasion attacks. This can be considered a relevant problem, as linear classifiers have been increasingly used in embedded systems and mobile devices for their low processing time and memory requirements. We exploit recent findings in robust optimization to investigate the link between regularization and security of linear classifiers, depending on the type of attack. We also analyze the relationship between the sparsity of feature weights, which is desirable for reducing processing cost, and the security of linear classifiers. We further propose a novel octagonal regularizer that allows us to achieve a proper trade-off between them. Finally, we empirically show how this regularizer can improve classifier security and sparsity in real-world application examples including spam and malware detection

    Hysteresis and bi-stability by an interplay of calcium oscillations and action potential firing

    Full text link
    Many cell types exhibit oscillatory activity, such as repetitive action potential firing due to the Hodgkin-Huxley dynamics of ion channels in the cell membrane or reveal intracellular inositol triphosphate (IP3_3) mediated calcium oscillations (CaOs) by calcium-induced calcium release channels (IP3_3-receptor) in the membrane of the endoplasmic reticulum (ER). The dynamics of the excitable membrane and that of the IP3_3-mediated CaOs have been the subject of many studies. However, the interaction between the excitable cell membrane and IP3_3-mediated CaOs, which are coupled by cytosolic calcium which affects the dynamics of both, has not been studied. This study for the first time applied stability analysis to investigate the dynamic behavior of a model, which includes both an excitable membrane and an intracellular IP3_3-mediated calcium oscillator. Taking the IP3_3 concentration as a control parameter, the model exhibits a novel rich spectrum of stable and unstable states with hysteresis. The four stable states of the model correspond in detail to previously reported growth-state dependent states of the membrane potential of normal rat kidney fibroblasts in cell culture. The hysteresis is most pronounced for experimentally observed parameter values of the model, suggesting a functional importance of hysteresis. This study shows that the four growth-dependent cell states may not reflect the behavior of cells that have differentiated into different cell types with different properties, but simply reflect four different states of a single cell type, that is characterized by a single model.Comment: 29 pages, 6 figure

    ATRA mechanically reprograms pancreatic stellate cells to suppress matrix remodelling and inhibit cancer cell invasion

    Get PDF
    Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy with a dismal survival rate. Persistent activation of pancreatic stellate cells (PSCs) can perturb the biomechanical homoeostasis of the tumour microenvironment to favour cancer cell invasion. Here we report that ATRA, an active metabolite of vitamin A, restores mechanical quiescence in PSCs via a mechanism involving a retinoic acid receptor beta (RAR-β)-dependent downregulation of actomyosin (MLC-2) contractility. We show that ATRA reduces the ability of PSCs to generate high traction forces and adapt to extracellular mechanical cues (mechanosensing), as well as suppresses force-mediated extracellular matrix remodelling to inhibit local cancer cell invasion in 3D organotypic models. Our findings implicate a RAR-β/MLC-2 pathway in peritumoural stromal remodelling and mechanosensory-driven activation of PSCs, and further suggest that mechanical reprogramming of PSCs with retinoic acid derivatives might be a viable alternative to stromal ablation strategies for the treatment of PDAC

    Unstable Dynamics, Nonequilibrium Phases and Criticality in Networked Excitable Media

    Full text link
    Here we numerically study a model of excitable media, namely, a network with occasionally quiet nodes and connection weights that vary with activity on a short-time scale. Even in the absence of stimuli, this exhibits unstable dynamics, nonequilibrium phases -including one in which the global activity wanders irregularly among attractors- and 1/f noise while the system falls into the most irregular behavior. A net result is resilience which results in an efficient search in the model attractors space that can explain the origin of certain phenomenology in neural, genetic and ill-condensed matter systems. By extensive computer simulation we also address a relation previously conjectured between observed power-law distributions and the occurrence of a "critical state" during functionality of (e.g.) cortical networks, and describe the precise nature of such criticality in the model.Comment: 18 pages, 9 figure

    PAC-Bayesian Bounds for Randomized Empirical Risk Minimizers

    Get PDF
    The aim of this paper is to generalize the PAC-Bayesian theorems proved by Catoni in the classification setting to more general problems of statistical inference. We show how to control the deviations of the risk of randomized estimators. A particular attention is paid to randomized estimators drawn in a small neighborhood of classical estimators, whose study leads to control the risk of the latter. These results allow to bound the risk of very general estimation procedures, as well as to perform model selection

    Bounds on transverse momentum dependent distribution and fragmentation functions

    Get PDF
    We give bounds on the distribution and fragmentation functions that appear at leading order in deep inelastic 1-particle inclusive leptoproduction or in Drell-Yan processes. These bounds simply follow from positivity of the defining matrix elements and are an important guidance in estimating the magnitude of the azimuthal and spin asymmetries in these processes.Comment: 5 pages, Revtex, 3 Postscript figures, version with minor changes, to be published in Physical Review Letter

    Quantization of (2+1)-spinning particles and bifermionic constraint problem

    Full text link
    This work is a natural continuation of our recent study in quantizing relativistic particles. There it was demonstrated that, by applying a consistent quantization scheme to a classical model of a spinless relativistic particle as well as to the Berezin-Marinov model of 3+1 Dirac particle, it is possible to obtain a consistent relativistic quantum mechanics of such particles. In the present article we apply a similar approach to the problem of quantizing the massive 2+1 Dirac particle. However, we stress that such a problem differs in a nontrivial way from the one in 3+1 dimensions. The point is that in 2+1 dimensions each spin polarization describes different fermion species. Technically this fact manifests itself through the presence of a bifermionic constant and of a bifermionic first-class constraint. In particular, this constraint does not admit a conjugate gauge condition at the classical level. The quantization problem in 2+1 dimensions is also interesting from the physical viewpoint (e.g. anyons). In order to quantize the model, we first derive a classical formulation in an effective phase space, restricted by constraints and gauges. Then the condition of preservation of the classical symmetries allows us to realize the operator algebra in an unambiguous way and construct an appropriate Hilbert space. The physical sector of the constructed quantum mechanics contains spin-1/2 particles and antiparticles without an infinite number of negative-energy levels, and exactly reproduces the one-particle sector of the 2+1 quantum theory of a spinor field.Comment: LaTex, 24 pages, no figure

    CARMENES input catalogue of M dwarfs. I. Low-resolution spectroscopy with CAFOS

    Get PDF
    Context. CARMENES is a stabilised, high-resolution, double-channel spectrograph at the 3.5 m Calar Alto telescope. It is optimally designed for radial-velocity surveys of M dwarfs with potentially habitable Earth-mass planets. Aims. We prepare a list of the brightest, single M dwarfs in each spectral subtype observable from the northern hemisphere, from which we will select the best planet-hunting targets for CARMENES. Methods. In this first paper on the preparation of our input catalogue, we compiled a large amount of public data and collected low-resolution optical spectroscopy with CAFOS at the 2.2 m Calar Alto telescope for 753 stars. We derived accurate spectral types using a dense grid of standard stars, a double least-squares minimisation technique, and 31 spectral indices previously defined by other authors. Additionally, we quantified surface gravity, metallicity, and chromospheric activity for all the stars in our sample. Results. We calculated spectral types for all 753 stars, of which 305 are new and 448 are revised. We measured pseudo-equivalent widths of Halpha for all the stars in our sample, concluded that chromospheric activity does not affect spectral typing from our indices, and tabulated 49 stars that had been reported to be young stars in open clusters, moving groups, and stellar associations. Of the 753 stars, two are new subdwarf candidates, three are T Tauri stars, 25 are giants, 44 are K dwarfs, and 679 are M dwarfs. Many of the 261 investigated dwarfs in the range M4.0-8.0 V are among the brightest stars known in their spectral subtype. Conclusions. This collection of low-resolution spectroscopic data serves as a candidate target list for the CARMENES survey and can be highly valuable for other radial-velocity surveys of M dwarfs and for studies of cool dwarfs in the solar neighbourhood.Comment: A&A, in pres
    corecore