10,258 research outputs found
The Nature of the Peculiar Virgo Cluster Galaxies NGC 4064 and NGC 4424
We present a detailed study of the peculiar HI-deficient Virgo cluster spiral
galaxies NGC 4064 and NGC 4424, using CO 1-0 interferometry, optical
imaging and integral-field spectroscopic observations, in order to learn what
type of environmental interactions have afected these galaxies. Optical imaging
reveals that NGC 4424 has a strongly disturbed stellar disk, with banana-shaped
isophotes and shells. NGC 4064, which lies in the cluster outskirts, possesses
a relatively undisturbed outer stellar disk and a central bar. In both galaxies
H-alpha emission is confined to the central kiloparsec. CO observations reveal
bilobal molecular gas morphologies, with H-alpha emission peaking inside the CO
lobes, implying a time sequence in the star formation process.Gas kinematics
reveals strong bar-like non-circular motions in the molecular gas in both
galaxies, suggesting that the material is radially infalling. In NGC 4064 the
stellar kinematics reveal strong bar-like non-circular motions in the central 1
kpc. On the other hand, NGC 4424 has extremely modest stellar rotation
velocities (Vmax ~ 30 km s-1), and stars are supported by random motions as far
out as we can measure it. The observations suggest that the peculiarities of
NGC 4424 are the result of an intermediate-mass merger plus ram pressure
stripping. In the case of NGC 4064, the evidence suggests an already stripped
"truncated/normal" galaxy that recently suffered a minor merger or tidal
interaction with another galaxy. We propose that galaxies with
"truncated/compact" H-alpha morphologies such as these are the result of the
independent effects of ram pressure stripping, which removes gas from the outer
disk, and gravitational interactions such as mergers, which heat stellar disks,
drive gas to the central kpc and increase the central mass concentrations.Comment: 42 pages, 21 figure
On Security and Sparsity of Linear Classifiers for Adversarial Settings
Machine-learning techniques are widely used in security-related applications,
like spam and malware detection. However, in such settings, they have been
shown to be vulnerable to adversarial attacks, including the deliberate
manipulation of data at test time to evade detection. In this work, we focus on
the vulnerability of linear classifiers to evasion attacks. This can be
considered a relevant problem, as linear classifiers have been increasingly
used in embedded systems and mobile devices for their low processing time and
memory requirements. We exploit recent findings in robust optimization to
investigate the link between regularization and security of linear classifiers,
depending on the type of attack. We also analyze the relationship between the
sparsity of feature weights, which is desirable for reducing processing cost,
and the security of linear classifiers. We further propose a novel octagonal
regularizer that allows us to achieve a proper trade-off between them. Finally,
we empirically show how this regularizer can improve classifier security and
sparsity in real-world application examples including spam and malware
detection
Hysteresis and bi-stability by an interplay of calcium oscillations and action potential firing
Many cell types exhibit oscillatory activity, such as repetitive action
potential firing due to the Hodgkin-Huxley dynamics of ion channels in the cell
membrane or reveal intracellular inositol triphosphate (IP) mediated
calcium oscillations (CaOs) by calcium-induced calcium release channels
(IP-receptor) in the membrane of the endoplasmic reticulum (ER). The
dynamics of the excitable membrane and that of the IP-mediated CaOs have
been the subject of many studies. However, the interaction between the
excitable cell membrane and IP-mediated CaOs, which are coupled by
cytosolic calcium which affects the dynamics of both, has not been studied.
This study for the first time applied stability analysis to investigate the
dynamic behavior of a model, which includes both an excitable membrane and an
intracellular IP-mediated calcium oscillator. Taking the IP
concentration as a control parameter, the model exhibits a novel rich spectrum
of stable and unstable states with hysteresis. The four stable states of the
model correspond in detail to previously reported growth-state dependent states
of the membrane potential of normal rat kidney fibroblasts in cell culture. The
hysteresis is most pronounced for experimentally observed parameter values of
the model, suggesting a functional importance of hysteresis. This study shows
that the four growth-dependent cell states may not reflect the behavior of
cells that have differentiated into different cell types with different
properties, but simply reflect four different states of a single cell type,
that is characterized by a single model.Comment: 29 pages, 6 figure
ATRA mechanically reprograms pancreatic stellate cells to suppress matrix remodelling and inhibit cancer cell invasion
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy with a dismal survival rate. Persistent activation of pancreatic stellate cells (PSCs) can perturb the biomechanical homoeostasis of the tumour microenvironment to favour cancer cell invasion. Here we report that ATRA, an active metabolite of vitamin A, restores mechanical quiescence in PSCs via a mechanism involving a retinoic acid receptor beta (RAR-β)-dependent downregulation of actomyosin (MLC-2) contractility. We show that ATRA reduces the ability of PSCs to generate high traction forces and adapt to extracellular mechanical cues (mechanosensing), as well as suppresses force-mediated extracellular matrix remodelling to inhibit local cancer cell invasion in 3D organotypic models. Our findings implicate a RAR-β/MLC-2 pathway in peritumoural stromal remodelling and mechanosensory-driven activation of PSCs, and further suggest that mechanical reprogramming of PSCs with retinoic acid derivatives might be a viable alternative to stromal ablation strategies for the treatment of PDAC
Unstable Dynamics, Nonequilibrium Phases and Criticality in Networked Excitable Media
Here we numerically study a model of excitable media, namely, a network with
occasionally quiet nodes and connection weights that vary with activity on a
short-time scale. Even in the absence of stimuli, this exhibits unstable
dynamics, nonequilibrium phases -including one in which the global activity
wanders irregularly among attractors- and 1/f noise while the system falls into
the most irregular behavior. A net result is resilience which results in an
efficient search in the model attractors space that can explain the origin of
certain phenomenology in neural, genetic and ill-condensed matter systems. By
extensive computer simulation we also address a relation previously conjectured
between observed power-law distributions and the occurrence of a "critical
state" during functionality of (e.g.) cortical networks, and describe the
precise nature of such criticality in the model.Comment: 18 pages, 9 figure
PAC-Bayesian Bounds for Randomized Empirical Risk Minimizers
The aim of this paper is to generalize the PAC-Bayesian theorems proved by
Catoni in the classification setting to more general problems of statistical
inference. We show how to control the deviations of the risk of randomized
estimators. A particular attention is paid to randomized estimators drawn in a
small neighborhood of classical estimators, whose study leads to control the
risk of the latter. These results allow to bound the risk of very general
estimation procedures, as well as to perform model selection
Bounds on transverse momentum dependent distribution and fragmentation functions
We give bounds on the distribution and fragmentation functions that appear at
leading order in deep inelastic 1-particle inclusive leptoproduction or in
Drell-Yan processes. These bounds simply follow from positivity of the defining
matrix elements and are an important guidance in estimating the magnitude of
the azimuthal and spin asymmetries in these processes.Comment: 5 pages, Revtex, 3 Postscript figures, version with minor changes, to
be published in Physical Review Letter
Quantization of (2+1)-spinning particles and bifermionic constraint problem
This work is a natural continuation of our recent study in quantizing
relativistic particles. There it was demonstrated that, by applying a
consistent quantization scheme to a classical model of a spinless relativistic
particle as well as to the Berezin-Marinov model of 3+1 Dirac particle, it is
possible to obtain a consistent relativistic quantum mechanics of such
particles. In the present article we apply a similar approach to the problem of
quantizing the massive 2+1 Dirac particle. However, we stress that such a
problem differs in a nontrivial way from the one in 3+1 dimensions. The point
is that in 2+1 dimensions each spin polarization describes different fermion
species. Technically this fact manifests itself through the presence of a
bifermionic constant and of a bifermionic first-class constraint. In
particular, this constraint does not admit a conjugate gauge condition at the
classical level. The quantization problem in 2+1 dimensions is also interesting
from the physical viewpoint (e.g. anyons). In order to quantize the model, we
first derive a classical formulation in an effective phase space, restricted by
constraints and gauges. Then the condition of preservation of the classical
symmetries allows us to realize the operator algebra in an unambiguous way and
construct an appropriate Hilbert space. The physical sector of the constructed
quantum mechanics contains spin-1/2 particles and antiparticles without an
infinite number of negative-energy levels, and exactly reproduces the
one-particle sector of the 2+1 quantum theory of a spinor field.Comment: LaTex, 24 pages, no figure
CARMENES input catalogue of M dwarfs. I. Low-resolution spectroscopy with CAFOS
Context. CARMENES is a stabilised, high-resolution, double-channel
spectrograph at the 3.5 m Calar Alto telescope. It is optimally designed for
radial-velocity surveys of M dwarfs with potentially habitable Earth-mass
planets. Aims. We prepare a list of the brightest, single M dwarfs in each
spectral subtype observable from the northern hemisphere, from which we will
select the best planet-hunting targets for CARMENES. Methods. In this first
paper on the preparation of our input catalogue, we compiled a large amount of
public data and collected low-resolution optical spectroscopy with CAFOS at the
2.2 m Calar Alto telescope for 753 stars. We derived accurate spectral types
using a dense grid of standard stars, a double least-squares minimisation
technique, and 31 spectral indices previously defined by other authors.
Additionally, we quantified surface gravity, metallicity, and chromospheric
activity for all the stars in our sample. Results. We calculated spectral types
for all 753 stars, of which 305 are new and 448 are revised. We measured
pseudo-equivalent widths of Halpha for all the stars in our sample, concluded
that chromospheric activity does not affect spectral typing from our indices,
and tabulated 49 stars that had been reported to be young stars in open
clusters, moving groups, and stellar associations. Of the 753 stars, two are
new subdwarf candidates, three are T Tauri stars, 25 are giants, 44 are K
dwarfs, and 679 are M dwarfs. Many of the 261 investigated dwarfs in the range
M4.0-8.0 V are among the brightest stars known in their spectral subtype.
Conclusions. This collection of low-resolution spectroscopic data serves as a
candidate target list for the CARMENES survey and can be highly valuable for
other radial-velocity surveys of M dwarfs and for studies of cool dwarfs in the
solar neighbourhood.Comment: A&A, in pres
- …
