26,272 research outputs found
Monte Carlo computer simulations of Venus equilibrium and global resurfacing models
Two models have been proposed for the resurfacing history of Venus: (1) equilibrium resurfacing and (2) global resurfacing. The equilibrium model consists of two cases: in case 1, areas less than or equal to 0.03 percent of the planet are spatially randomly resurfaced at intervals of less than or greater than 150,000 yr to produce the observed spatially random distribution of impact craters and average surface age of about 500 m.y.; and in case 2, areas greater than or equal to 10 percent of the planet are resurfaced at intervals of greater than or equal to 50 m.y. The global resurfacing model proposes that the entire planet was resurfaced about 500 m.y. ago, destroying the preexisting crater population and followed by significantly reduced volcanism and tectonism. The present crater population has accumulated since then with only 4 percent of the observed craters having been embayed by more recent lavas. To test the equilibrium resurfacing model we have run several Monte Carlo computer simulations for the two proposed cases. It is shown that the equilibrium resurfacing model is not a valid model for an explanation of the observed crater population characteristics or Venus' resurfacing history. The global resurfacing model is the most likely explanation for the characteristics of Venus' cratering record. The amount of resurfacing since that event, some 500 m.y. ago, can be estimated by a different type of Monte Carolo simulation. To date, our initial simulation has only considered the easiest case to implement. In this case, the volcanic events are randomly distributed across the entire planet and, therefore, contrary to observation, the flooded craters are also randomly distributed across the planet
Recommended from our members
Atmospheric modelling for NOMAD-UVIS on board the ExoMars Trace Gas Orbiter mission
The Ultraviolet and Visible Spectrometer (UVIS) instrument development process requires the construction of an atmospheric model to provide synthetic UV transmission spectra. We discuss the requirements of the model to enable observational limits to be found, and the potential for certain atmospheric parameters to be further constrained
Secondary teachers' perceptions of the effectiveness of their pre-service education and strategies to improve pre-service education for teachers: A school based training route in England
This study aims to provide a deeper understanding of the impact of an EBITT course on teachers' early professional development, identify strengths of the course and also the ways in which the training could be improved. Data collected was recorded during individual face- to- face interviews using a structured interview schedule. In devising our approach we utilised the model suggested by Sharon Feiman-Nemser in her article How do Teachers Learn to Teach? in Cochran - Smith et. al. (2008) Handbook of Research on Teacher Education
The data was analysed to explore (after 2-4 years reflection):
• which elements of initial training were valuable and less valuable
• what they have learned since the course
• which aspects of the course the teachers feel should be improved
It was cross referenced against findings from national surveys of teachers in their post qualifying year of teaching (induction year) and early years of teaching conducted by the TDA. These findings were presented as part of a common wider international study on the same theme in four countries (UK, Spain, Australia, and Ireland)
Peripheral visual response time to colored stimuli imaged on the horizontal meridian
Two male observers were administered a binocular visual response time task to small (45 min arc), flashed, photopic stimuli at four dominant wavelengths (632 nm red; 583 nm yellow; 526 nm green; 464 nm blue) imaged across the horizontal retinal meridian. The stimuli were imaged at 10 deg arc intervals from 80 deg left to 90 deg right of fixation. Testing followed either prior light adaptation or prior dark adaptation. Results indicated that mean response time (RT) varies with stimulus color. RT is faster to yellow than to blue and green and slowest to red. In general, mean RT was found to increase from fovea to periphery for all four colors, with the curve for red stimuli exhibiting the most rapid positive acceleration with increasing angular eccentricity from the fovea. The shape of the RT distribution across the retina was also found to depend upon the state of light or dark adaptation. The findings are related to previous RT research and are discussed in terms of optimizing the color and position of colored displays on instrument panels
Recommended from our members
Radiative transfer modelling for the NOMAD-UVIS instrument on the ExoMars Trace Gas Orbiter mission
The NOMAD (Nadir and Occultation for MArs Discovery) instrument is a 3-channel (2 IR, 1 UV/Vis) spectrometer due to fly on the 2016 ExoMars Trace Gas Orbiter mission. A radiative transfer model for Mars has been developed providing synthetic spectra to simulate observations of the UVIS channel in both solar occultation and nadir viewing geometries. This will allow for the characterization and mitigation of the influence of dust on retrievals of ozone abundance
Vector form factor in K_l3 semileptonic decay with two flavors of dynamical domain-wall quarks
We calculate the vector form factor in K \to \pi l \nu semileptonic decays at
zero momentum transfer f_+(0) from numerical simulations of two-flavor QCD on
the lattice. Our simulations are carried out on 16^3 \times 32 at a lattice
spacing of a \simeq 0.12 fm using a combination of the DBW2 gauge and the
domain-wall quark actions, which possesses excellent chiral symmetry even at
finite lattice spacings. The size of fifth dimension is set to L_s=12, which
leads to a residual quark mass of a few MeV. Through a set of double ratios of
correlation functions, the form factor calculated on the lattice is accurately
interpolated to zero momentum transfer, and then is extrapolated to the
physical quark mass. We obtain f_+(0)=0.968(9)(6), where the first error is
statistical and the second is the systematic error due to the chiral
extrapolation. Previous estimates based on a phenomenological model and chiral
perturbation theory are consistent with our result. Combining with an average
of the decay rate from recent experiments, our estimate of f_+(0) leads to the
Cabibbo-Kobayashi-Maskawa (CKM) matrix element |V_{us}|=0.2245(27), which is
consistent with CKM unitarity. These estimates of f_+(0) and |V_{us}| are
subject to systematic uncertainties due to the finite lattice spacing and
quenching of strange quarks, though nice consistency in f_+(0) with previous
lattice calculations suggests that these errors are not large.Comment: 23 pages, 11 figures, 7 tables, RevTeX4; v3: one table added, results
and conclusions unchanged, final version to appear in Phys.Rev.
Mechanism of enhanced light output in InGaN-based microlight emitting diodes
Micro-light emitting diode (LED) arrays with diameters of 4 to 20 mum have been fabricated and were found to be much more efficient light emitters compared to their broad-area counterparts, with up to five times enhancement in optical power densities. The possible mechanisms responsible for the improvement in performance were investigated. Strain relaxation in the microstructures as measured by Raman spectroscopy was not observed, arguing against theories of an increase in internal quantum efficiency due to a reduction of the piezoelectric field put forward by other groups. Optical microscope images show intense light emission at the periphery of the devices, as a result of light scattering off the etched sidewalls. This increases the extraction efficiency relative to broad area devices and boosts the forward optical output. In addition, spectra of the forward emitted light reveal the presence of resonant cavity modes [whispering gallery (WG) modes in particular] which appear to play a role in enhancing the optical output
The Kaon B-parameter from Quenched Domain-Wall QCD
We present numerical results for the kaon B-parameter, B_K, determined in the
quenched approximation of lattice QCD. Our simulations are performed using
domain-wall fermions and the renormalization group improved, DBW2 gauge action
which combine to give quarks with good chiral symmetry at finite lattice
spacing. Operators are renormalized non-perturbatively using the RI/MOM scheme.
We study scaling by performing the simulation on two different lattices with
a^{-1} = 1.982(30) and 2.914(54) GeV. We combine this quenched scaling study
with an earlier calculation of B_K using two flavors of dynamical, domain-wall
quarks at a single lattice spacing to obtain
B_K(MS,NDR,mu=2GeV)=0.563(21)(39)(30), were the first error is statistical, the
second systematic (without quenching errors) and the third estimates the error
due to quenching.Comment: 77 pages, 44 figures, to be published in Phys. Rev.
Search for bursts in air shower data
There have been reports in recent years of the possible observation of bursts in air shower data. If such events are truly of an astrophysical nature then, they represent an important new class of phemonenon since no other bursts have been observed above the MeV level. The spectra of conventional gamma ray bursts are unknown at higher energies but their observed spectra at MeV energies appear generally to exhibit a steepening in the higher MeV range and are thus unlikely to extrapolate to measurable fluxes at air shower energies. An attempt has been made to look for deviations from randomness in the arrival times of air showers above approx. 10 to the 14th power eV with a number of systems and results so far are presented here. This work will be continued for a substantial period of ime with a system capable of recording bursts with multiple events down to a spacing of 4 microns. Earlier data have also been searched for the possible association of air shower events with a glitch of the Vela pulsar
Performance of AAOmega: the AAT multi-purpose fibre-fed spectrograph
AAOmega is the new spectrograph for the 2dF fibre-positioning system on the
Anglo-Australian Telescope. It is a bench-mounted, double-beamed design, using
volume phase holographic (VPH) gratings and articulating cameras. It is fed by
392 fibres from either of the two 2dF field plates, or by the 512 fibre SPIRAL
integral field unit (IFU) at Cassegrain focus. Wavelength coverage is 370 to
950nm and spectral resolution 1,000-8,000 in multi-Object mode, or 1,500-10,000
in IFU mode. Multi-object mode was commissioned in January 2006 and the IFU
system will be commissioned in June 2006.
The spectrograph is located off the telescope in a thermally isolated room
and the 2dF fibres have been replaced by new 38m broadband fibres. Despite the
increased fibre length, we have achieved a large increase in throughput by use
of VPH gratings, more efficient coatings and new detectors - amounting to a
factor of at least 2 in the red. The number of spectral resolution elements and
the maximum resolution are both more than doubled, and the stability is an
order of magnitude better.
The spectrograph comprises: an f/3.15 Schmidt collimator, incorporating a
dichroic beam-splitter; interchangeable VPH gratings; and articulating red and
blue f/1.3 Schmidt cameras. Pupil size is 190mm, determined by the competing
demands of cost, obstruction losses, and maximum resolution. A full suite of
VPH gratings has been provided to cover resolutions 1,000 to 7,500, and up to
10,000 at particular wavelengths.Comment: 13 pages, 4 figures; presented at SPIE, Astronomical Telescopes and
Instrumentation, 24 - 31 May 2006, Orlando, Florida US
- …
