46,420 research outputs found
Observations of medium energy gamma ray emission from the galactic center region
Measurements of the gamma-ray emission in the medium energy range between 15 and 100 MeV, obtained during two ballon flights from Brazil are presented. The importance of this energy region in determining whether pi deg - decay of electron bremsstrahlung is the most likely dominant source mechanism is discussed along with the implications of such observations. Specifically, the data from this experiment suggest that emission from the galactic plane is similar to theoretical spectrum calculations including both sources mechanisms, but with the bremsstrahlung component enhanced by a factor of about 2. A spectral distribution of gamma-rays produced in the residual atmosphere above the instrument is also presented and compared with other data. A rather smooth spectral variation from high to low energies is found for the atmospheric spectrum
Two Modes of Solid State Nucleation - Ferrites, Martensites and Isothermal Transformation Curves
When a crystalline solid such as iron is cooled across a structural
transition, its final microstructure depends sensitively on the cooling rate.
For instance, an adiabatic cooling across the transition results in an
equilibrium `ferrite', while a rapid cooling gives rise to a metastable twinned
`martensite'. There exists no theoretical framework to understand the dynamics
and conditions under which both these microstructures obtain. Existing theories
of martensite dynamics describe this transformation in terms of elastic strain,
without any explanation for the occurence of the ferrite. Here we provide
evidence for the crucial role played by non-elastic variables, {\it viz.},
dynamically generated interfacial defects. A molecular dynamics (MD) simulation
of a model 2-dimensional (2d) solid-state transformation reveals two distinct
modes of nucleation depending on the temperature of quench. At high
temperatures, defects generated at the nucleation front relax quickly giving
rise to an isotropically growing `ferrite'. At low temperatures, the defects
relax extremely slowly, forcing a coordinated motion of atoms along specific
directions. This results in a twinned critical nucleus which grows rapidly at
speeds comparable to that of sound. Based on our MD results, we propose a
solid-state nucleation theory involving the elastic strain and non-elastic
defects, which successfully describes the transformation to both a ferrite and
a martensite. Our work provides useful insights on how to formulate a general
dynamics of solid state transformations.Comment: 3 pages, 4 B/W + 2 color figure
Thickness dependent magnetotransport in ultra-thin manganite films
To understand the near-interface magnetism in manganites, uniform, ultra-thin
films of La_{0.67}Sr_{0.33}MnO_3 were grown epitaxially on single crystal (001)
LaAlO_3 and (110) NdGaO_3 substrates. The temperature and magnetic field
dependent film resistance is used to probe the film's structural and magnetic
properties. A surface and/or interface related dead-layer is inferred from the
thickness dependent resistance and magnetoresistance. The total thickness of
the dead layer is estimated to be for films on NdGaO_3 and for films on LaAlO_3.Comment: 11 pages, 4 figure
Effect of neurostimulation on cognition and mood in refractory epilepsy.
Epilepsy is a common, debilitating neurological disorder characterized by recurrent seizures. Mood disorders and cognitive deficits are common comorbidities in epilepsy that, like seizures, profoundly influence quality of life and can be difficult to treat. For patients with refractory epilepsy who are not candidates for resection, neurostimulation, the electrical modulation of epileptogenic brain tissue, is an emerging treatment alternative. Several forms of neurostimulation are currently available, and therapy selection hinges on relative efficacy for seizure control and amelioration of neuropsychiatric comorbidities. Here, we review the current evidence for how invasive and noninvasive neurostimulation therapies affect mood and cognition in persons with epilepsy. Invasive therapies include vagus nerve stimulation (VNS), deep brain stimulation (DBS), and responsive neurostimulation (RNS). Noninvasive therapies include trigeminal nerve stimulation (TNS), repetitive transcranial magnetic stimulation (rTMS), and transcranial direct current stimulation (tDCS). Overall, current evidence supports stable cognition and mood with all neurostimulation therapies, although there is some evidence that cognition and mood may improve with invasive forms of neurostimulation. More research is required to optimize the effects of neurostimulation for improvements in cognition and mood
Zeno and anti-Zeno polarization control of spin-ensembles by induced dephasing
We experimentally and theoretically demonstrate the purity (polarization)
control of qubits entangled with multiple spins, using induced dephasing in
nuclear magnetic resonance (NMR) setups to simulate repeated quantum
measurements. We show that one may steer the qubit ensemble towards a
quasi-equilibrium state of certain purity, by choosing suitable time intervals
between dephasing operations. These results demonstrate that repeated dephasing
at intervals associated with the anti-Zeno regime lead to ensemble
purification, whereas those associated with the Zeno regime lead to ensemble
mixing.Comment: Main Text: 5 pages, 2 figures. Sup. Inf.: 5pages, 1 figur
Enhanced photothermal displacement spectroscopy for thin-film characterization using a Fabry-Perot resonator
We have developed a technique for photothermal displacement spectroscopy that is potentially orders of magnitude more sensitive than conventional methods. We use a single Fabry-Perot resonator to enhance both the intensity of the pump beam and the sensitivity of the probe beam. The result is an enhancement of the response of the instrument by a factor proportional to the square of the finesse of the cavity over conventional interferometric measurements. In this paper we present a description of the technique, and we discuss how the properties of thin films can be deduced from the photothermal response. As an example of the technique, we report a measurement of the thermal properties of a multilayer dielectric mirror similar to those used in interferometric gravitational wave detectors
A short, cylindrical antenna as a diagnostic probe for measuring collision frequencies in a collision-dominated, non-Maxwellian plasma
Effects of particle collisions on antiresonant characteristics of cylindrical antennas used in electron plasma temperature and density measurement
Lattice Green's function for crystals containing a planar interface
Flexible boundary condition methods couple an isolated defect to a
harmonically responding medium through the bulk lattice Green's function; in
the case of an interface, interfacial lattice Green's functions. We present a
method to compute the lattice Green's function for a planar interface with
arbitrary atomic interactions suited for the study of line defect/interface
interactions. The interface is coupled to two different semi-infinite bulk
regions, and the Green's function for interface-interface, bulk-interface and
bulk-bulk interactions are computed individually. The elastic bicrystal Green's
function and the bulk lattice Green's function give the interaction between
bulk regions. We make use of partial Fourier transforms to treat in-plane
periodicity. Direct inversion of the force constant matrix in the partial
Fourier space provides the interface terms. The general method makes no
assumptions about the atomic interactions or crystal orientations. We simulate
a screw dislocation interacting with a twin boundary in Ti using
flexible boundary conditions and compare with traditional fixed boundary
conditions results. Flexible boundary conditions give the correct core
structure with significantly less atoms required to relax by energy
minimization. This highlights the applicability of flexible boundary conditions
methods to modeling defect/interface interactions by \textit{ab initio}
methods
- …
