3,095 research outputs found
Installation of New CSD (Carbonated Soft Drink) RGB (Returnable Glass Bottle) Line with Food Safety Comply and Final Validation
The basic of this project was installation of new CSD (carbonated soft drink) RGB (returnable glass bottle) line with comply food safety and final validation of line. New manufacturing line installation deals with installation of all equipment and machine require for smooth running and producing CSD for COCA-COLA company (Coca-Cola, Thums UP, Limca) such as conveyer belt, uncasing machine, light inspection station, bottle washer EBI (electronic bottle inspection ) machine, Paramix, Filler, Sealer, Date coding machine, caser etc. During installation of machine we have fulfill requirement related to machine, work space, hygienic condition so that machine can work smoothly and deliver safe food product The main concern of doing this project was deliver a safe product to the consumer by applying HACCP and ISO22K. I have done hazard analysis and validation of this new installed line and identify CCP and OPRP which need to control by applying control measure
The propensity of molecules to spatially align in intense light fields
The propensity of molecules to spatially align along the polarization vector
of intense, pulsed light fields is related to readily-accessible parameters
(molecular polarizabilities, moment of inertia, peak intensity of the light and
its pulse duration). Predictions can now be made of which molecules can be
spatially aligned, and under what circumstances, upon irradiation by intense
light. Accounting for both enhanced ionization and hyperpolarizability, it is
shown that {\it all} molecules can be aligned, even those with the smallest
static polarizability, when subjected to the shortest available laser pulses
(of sufficient intensity).Comment: 8 pages, 4 figures, to be submitted to PR
Polycistronic Delivery of IL-10 and NT-3 Promotes Oligodendrocyte Myelination and Functional Recovery in a Mouse Spinal Cord Injury Model.
One million estimated cases of spinal cord injury (SCI) have been reported in the United States and repairing an injury has constituted a difficult clinical challenge. The complex, dynamic, inhibitory microenvironment postinjury, which is characterized by proinflammatory signaling from invading leukocytes and lack of sufficient factors that promote axonal survival and elongation, limits regeneration. Herein, we investigated the delivery of polycistronic vectors, which have the potential to coexpress factors that target distinct barriers to regeneration, from a multiple channel poly(lactide-co-glycolide) (PLG) bridge to enhance spinal cord regeneration. In this study, we investigated polycistronic delivery of IL-10 that targets proinflammatory signaling, and NT-3 that targets axonal survival and elongation. A significant increase was observed in the density of regenerative macrophages for IL-10+NT-3 condition relative to conditions without IL-10. Furthermore, combined delivery of IL-10+NT-3 produced a significant increase of axonal density and notably myelinated axons compared with all other conditions. A significant increase in functional recovery was observed for IL-10+NT-3 delivery at 12 weeks postinjury that was positively correlated to oligodendrocyte myelinated axon density, suggesting oligodendrocyte-mediated myelination as an important target to improve functional recovery. These results further support the use of multiple channel PLG bridges as a growth supportive substrate and platform to deliver bioactive agents to modulate the SCI microenvironment and promote regeneration and functional recovery. Impact statement Spinal cord injury (SCI) results in a complex microenvironment that contains multiple barriers to regeneration and functional recovery. Multiple factors are necessary to address these barriers to regeneration, and polycistronic lentiviral gene therapy represents a strategy to locally express multiple factors simultaneously. A bicistronic vector encoding IL-10 and NT-3 was delivered from a poly(lactide-co-glycolide) bridge, which provides structural support that guides regeneration, resulting in increased axonal growth, myelination, and subsequent functional recovery. These results demonstrate the opportunity of targeting multiple barriers to SCI regeneration for additive effects
Center to limb observations and modeling of the Ca I 4227 A line
The observed center-to-limb variation (CLV) of the scattering polarization in
different lines of the Second Solar Spectrum can be used to constrain the
height variation of various atmospheric parameters, in particular the magnetic
fields via the Hanle effect. Here we attempt to model non-magnetic CLV
observations of the profiles of the Ca I 4227 A line recorded with the
ZIMPOL-3 at IRSOL. For modeling, we use the polarized radiative transfer with
partial frequency redistribution with a number of realistic 1-D model
atmospheres. We find that all the standard FAL model atmospheres, used by us,
fail to simultaneously fit the observed (, ) at all the limb distances
(). However, an attempt is made to find a single model which can provide a
fit at least to the CLV of the observed instead of a simultaneous fit to
the (, ) at all . To this end we construct a new 1-D model by
combining two of the standard models after modifying their temperature
structures in the appropriate height ranges. This new combined model closely
reproduces the observed at all the , but fails to reproduce the
observed rest intensity at different . Hence we find that no single 1-D
model atmosphere succeeds in providing a good representation of the real Sun.
This failure of 1-D models does not however cause an impediment to the magnetic
field diagnostic potential of the Ca I 4227 A line. To demonstrate this we
deduce the field strength at various positions without invoking the use
of radiative transfer.Comment: 20 pages, 10 figures, Accepted for publication in Ap
Predicting blunt cerebrovascular injury in pediatric trauma: Validation of the Utah Score
Risk factors for blunt cerebrovascular injury (BCVI) may differ between children and adults, suggesting that children at low risk for BCVI after trauma receive unnecessary computed tomography angiography (CTA) and high-dose radiation. We previously developed a score for predicting pediatric BCVI based on retrospective cohort analysis. Our objective is to externally validate this prediction score with a retrospective multi-institutional cohort. We included patients who underwent CTA for traumatic cranial injury at four pediatric Level I trauma centers. Each patient in the validation cohort was scored using the “Utah Score” and classified as high or low risk. Before analysis, we defined a misclassification rate <25% as validating the Utah Score. Six hundred forty-five patients (mean age 8.6 ± 5.4 years; 63.4% males) underwent screening for BCVI via CTA. The validation cohort was 411 patients from three sites compared with the training cohort of 234 patients. Twenty-two BCVIs (5.4%) were identified in the validation cohort. The Utah Score was significantly associated with BCVIs in the validation cohort (odds ratio 8.1 [3.3, 19.8], p < 0.001) and discriminated well in the validation cohort (area under the curve 72%). When the Utah Score was applied to the validation cohort, the sensitivity was 59%, specificity was 85%, positive predictive value was 18%, and negative predictive value was 97%. The Utah Score misclassified 16.6% of patients in the validation cohort. The Utah Score for predicting BCVI in pediatric trauma patients was validated with a low misclassification rate using a large, independent, multicenter cohort. Its implementation in the clinical setting may reduce the use of CTA in low-risk patients
PLG Bridge Implantation in Chronic SCI Promotes Axonal Elongation and Myelination.
Spinal cord injury (SCI) is a devastating condition that may cause permanent functional loss below the level of injury, including paralysis and loss of bladder, bowel, and sexual function. Patients are rarely treated immediately, and this delay is associated with tissue loss and scar formation that can make regeneration at chronic time points more challenging. Herein, we investigated regeneration using a poly(lactide-co-glycolide) multichannel bridge implanted into a chronic SCI following surgical resection of necrotic tissue. We characterized the dynamic injury response and noted that scar formation decreased at 4 and 8 weeks postinjury (wpi), yet macrophage infiltration increased between 4 and 8 wpi. Subsequently, the scar tissue was resected and bridges were implanted at 4 and 8 wpi. We observed robust axon growth into the bridge and remyelination at 6 months after initial injury. Axon densities were increased for 8 week bridge implantation relative to 4 week bridge implantation, whereas greater myelination, particularly by Schwann cells, was observed with 4 week bridge implantation. The process of bridge implantation did not significantly decrease the postinjury function. Collectively, this chronic model follows the pathophysiology of human SCI, and bridge implantation allows for clear demarcation of the regenerated tissue. These data demonstrate that bridge implantation into chronic SCI supports regeneration and provides a platform to investigate strategies to buttress and expand regeneration of neural tissue at chronic time points
Oral cavity squamous cell carcinoma xenografts retain complex genotypes and intertumor molecular heterogeneity
Optical properties of hydrogenated amorphous silicon
A detailed study of the optical properties of sputtered hydrogenated amorphous silicon films with varying hydrogen concentration is presented here. The energy dependence of the absorption coefficient is looked into, in detail, from a point of view of understanding the well known Tauc rule and the alternate relations being proposed in recent years. Spectroscopic and band‐structural models like Wemple-Didomenico and Penn are then utilized to analyze the optical parameters near the band‐gap region of the wavelength spectra. Extensive comparisons of our results are made with those of sputtered a‐Si:H films of other workers, glow discharge prepared a‐Si:H, chemically vapor deposited and evaporated a‐Si, and also crystalline silicon. The similarities in the variation of the optical properties of a‐Si:H with increasing hydrogen concentration (or decreasing measurement temperature) to that of crystalline silicon with decreasing measurement temperature lead us to interesting conclusions. Thus, it seems that decreasing disorder (topological or thermal) in a‐Si:H is equivalent to decreasing thermal disorder in c‐Si, at least as far as the disorder‐optical property relationships are concerned
Controlling femtosecond-laser-driven shock-waves in hot, dense plasma
Ultrafast pump-probe reflectometry and Doppler spectrometry of a supercritical density plasma layer excited by 1017-1018 W/cm2 intensity, 30 fs, and 800 nm laser pulses reveal the interplay of laser intensity contrast and inward shock wave strength. The inward shock wave velocity increases with an increase in laser intensity contrast. This trend is supported by simulations as well as by a separate independent experiment employing an external prepulse to control the inward motion of the shock wave. This kind of cost-effective control of shock wave strength using femtosecond pulses could open up new applications in medicine, science, and engineering
Efficient transport of femtosecond laser-generated fast electrons in a millimeter thick graphite
We demonstrate efficient transport of fast electrons generated by ∼1018 W/cm2, 30 fs, 800 nm laser pulses through a millimeter thick polycrystalline graphite. Measurements of hot electron spectra at the front side of the graphite target show enhancement in terms of the electron flux and temperature, while the spectra at the rear confirm the ability of the graphite to transport large electron currents over a macroscopic distance of a millimeter. In addition, protons of keV energies are observed at the rear side of such a macroscopically thick target and attributed to the target-normal-sheath-acceleration mechanism
- …
