189 research outputs found
Faster Family-wise Error Control for Neuroimaging with a Parametric Bootstrap
In neuroimaging, hundreds to hundreds of thousands of tests are performed
across a set of brain regions or all locations in an image. Recent studies have
shown that the most common family-wise error (FWE) controlling procedures in
imaging, which rely on classical mathematical inequalities or Gaussian random
field theory, yield FWE rates that are far from the nominal level. Depending on
the approach used, the FWER can be exceedingly small or grossly inflated. Given
the widespread use of neuroimaging as a tool for understanding neurological and
psychiatric disorders, it is imperative that reliable multiple testing
procedures are available. To our knowledge, only permutation joint testing
procedures have been shown to reliably control the FWER at the nominal level.
However, these procedures are computationally intensive due to the increasingly
available large sample sizes and dimensionality of the images, and analyses can
take days to complete. Here, we develop a parametric bootstrap joint testing
procedure. The parametric bootstrap procedure works directly with the test
statistics, which leads to much faster estimation of adjusted \emph{p}-values
than resampling-based procedures while reliably controlling the FWER in sample
sizes available in many neuroimaging studies. We demonstrate that the procedure
controls the FWER in finite samples using simulations, and present region- and
voxel-wise analyses to test for sex differences in developmental trajectories
of cerebral blood flow
The control of brain network dynamics across diverse scales of space and time
The human brain is composed of distinct regions that are each associated with
particular functions and distinct propensities for the control of neural
dynamics. However, the relation between these functions and control profiles is
poorly understood, as is the variation in this relation across diverse scales
of space and time. Here we probe the relation between control and dynamics in
brain networks constructed from diffusion tensor imaging data in a large
community based sample of young adults. Specifically, we probe the control
properties of each brain region and investigate their relationship with
dynamics across various spatial scales using the Laplacian eigenspectrum. In
addition, through analysis of regional modal controllability and partitioning
of modes, we determine whether the associated dynamics are fast or slow, as
well as whether they are alternating or monotone. We find that brain regions
that facilitate the control of energetically easy transitions are associated
with activity on short length scales and slow time scales. Conversely, brain
regions that facilitate control of difficult transitions are associated with
activity on long length scales and fast time scales. Built on linear dynamical
models, our results offer parsimonious explanations for the activity
propagation and network control profiles supported by regions of differing
neuroanatomical structure.Comment: 12 pages, 7 figures. arXiv admin note: text overlap with
arXiv:1607.0101
Sex differences in the Simon task help to interpret sex differences in selective attention.
In the last decade, a number of studies have reported sex differences in selective attention, but a unified explanation for these effects is still missing. This study aims to better understand these differences and put them in an evolutionary psychological context. 418 adult participants performed a computer-based Simon task, in which they responded to the direction of a left or right pointing arrow appearing left or right from a fixation point. Women were more strongly influenced by task-irrelevant spatial information than men (i.e., the Simon effect was larger in women, Cohen's d = 0.39). Further, the analysis of sex differences in behavioral adjustment to errors revealed that women slow down more than men following mistakes (d = 0.53). Based on the combined results of previous studies and the current data, it is proposed that sex differences in selective attention are caused by underlying sex differences in core abilities, such as spatial or verbal cognition
Neuroanatomical Abnormalities in Violent Individuals with and without a Diagnosis of Schizophrenia
Several structural brain abnormalities have been associated with aggression in patients with schizophrenia. However, little is known about shared and distinct abnormalities underlying aggression in these subjects and non-psychotic violent individuals. We applied a region-of interest volumetric analysis of the amygdala, hippocampus, and thalamus bilaterally, as well as whole brain and ventricular volumes to investigate violent (n = 37) and non-violent chronic patients (n = 26) with schizophrenia, non-psychotic violent (n = 24) as well as healthy control subjects (n = 24). Shared and distinct volumetric abnormalities were probed by analysis of variance with the factors violence (non-violent versus violent) and diagnosis (non-psychotic versus psychotic), adjusted for substance abuse, age, academic achievement and negative psychotic symptoms. Patients showed elevated vCSF volume, smaller left hippocampus and smaller left thalamus volumes. This was particularly the case for non-violent individuals diagnosed with schizophrenia. Furthermore, patients had reduction in right thalamus size. With regard to left amygdala, we found an interaction between violence and diagnosis. More specifically, we report a double dissociation with smaller amygdala size linked to violence in non-psychotic individuals, while for psychotic patients smaller size was linked to non-violence. Importantly, the double dissociation appeared to be mostly driven by substance abuse. Overall, we found widespread morphometric abnormalities in subcortical regions in schizophrenia. No evidence for shared volumetric abnormalities in individuals with a history of violence was found. Finally, left amygdala abnormalities in non-psychotic violent individuals were largely accounted for by substance abuse. This might be an indication that the association between amygdala reduction and violence is mediated by substance abuse. Our results indicate the importance of structural abnormalities in aggressive individuals
QSIPrep: an integrative platform for preprocessing and reconstructing diffusion MRI data
Diffusion-weighted magnetic resonance imaging (dMRI) is the primary method for noninvasively studying the organization of white matter in the human brain. Here we introduce QSIPrep, an integrative software platform for the processing of diffusion images that is compatible with nearly all dMRI sampling schemes. Drawing on a diverse set of software suites to capitalize on their complementary strengths, QSIPrep facilitates the implementation of best practices for processing of diffusion images
Electrophysiological study of local/global processing in Williams syndrome
Persons with Williams syndrome (WS) demonstrate pronounced deficits in visuo-spatial processing. The purpose of the current study was to examine the preferred level of perceptual analysis in young adults with WS (n = 21) and the role of attention in the processing of hierarchical stimuli. Navon-like letter stimuli were presented to adults with WS and age-matched typical controls in an oddball paradigm where local and global targets could appear with equal probability. Participants received no explicit instruction to direct their attention toward a particular stimulus level. Behavioral and event-related potential (ERP) data were recorded. Behavioral data indicated presence of a global precedence effect in persons with WS. However, their ERP responses revealed atypical brain mechanisms underlying attention to local information. During the early perceptual analysis, global targets resulted in reduced P1 and enhanced N150 responses in both participant groups. However, only the typical comparison group demonstrated a larger N150 to local targets. At the more advanced stages of cognitive processing, a larger P3b response to global and local targets was observed in the typical group but not in persons with WS, who instead demonstrated an enhanced P3a to global targets only. The results indicate that in a perceptual task, adults with WS may experience greater than typical global-to-local interference and not allocate sufficient attentional resources to local information
Effects of copy number variations on brain structure and risk for psychiatric illness: Large-scale studies from the ENIGMA working groups on CNVs
The Enhancing NeuroImaging Genetics through Meta-Analysis copy number variant (ENIGMA-CNV) and 22q11.2 Deletion Syndrome Working Groups (22q-ENIGMA WGs) were created to gain insight into the involvement of genetic factors in human brain development and related cognitive, psychiatric and behavioral manifestations. To that end, the ENIGMA-CNV WG has collated CNV and magnetic resonance imaging (MRI) data from ~49,000 individuals across 38 global research sites, yielding one of the largest studies to date on the effects of CNVs on brain structures in the general population. The 22q-ENIGMA WG includes 12 international research centers that assessed over 533 individuals with a confirmed 22q11.2 deletion syndrome, 40 with 22q11.2 duplications, and 333 typically developing controls, creating the largest-ever 22q11.2 CNV neuroimaging data set. In this review, we outline the ENIGMA infrastructure and procedures for multi-site analysis of CNVs and MRI data. So far, ENIGMA has identified effects of the 22q11.2, 16p11.2 distal, 15q11.2, and 1q21.1 distal CNVs on subcortical and cortical brain structures. Each CNV is associated with differences in cognitive, neurodevelopmental and neuropsychiatric traits, with characteristic patterns of brain structural abnormalities. Evidence of gene-dosage effects on distinct brain regions also emerged, providing further insight into genotype–phenotype relationships. Taken together, these results offer a more comprehensive picture of molecular mechanisms involved in typical and atypical brain development. This “genotype-first” approach also contributes to our understanding of the etiopathogenesis of brain disorders. Finally, we outline future directions to better understand effects of CNVs on brain structure and behavior
- …
