1,628 research outputs found
Revised research about chaotic dynamics in Manko et al. spacetime
A recent work by Dubeibe et al. [Phys. Rev. D 75, 023008 (2007)] stated that
chaos phenomenon of test particles in gravitational field of rotating neutron
stars which are described by Manko, Sanabria-Gomez, and Manko (Manko et al.)
metric can only occur when the stars have oblate deformation. But the chaotic
motions they found are limited in a very narrow zone which is very close to the
center of the massive bodies. This paper argues that this is impossible because
the region is actually inside of the stars, so the motions cannot exist at this
place. In this paper, we scan all parameters space and find chaos and unstable
fixed points outside of stars with big mass-quadrupole moments. The
calculations show that chaos can only occur when the stars have prolate
deformation. Because real deformation of stars should be oblate, all orbits of
test particles around the rotating neutron stars described by Manko et al.
solutions are regular. The case of nonzero dipolar magnetic moment has also
been taken into account in this study.Comment: 6 pages, 5 figure
Effects of dissipation in an adiabatic quantum search algorithm
We consider the effect of two different environments on the performance of
the quantum adiabatic search algorithm, a thermal bath at finite temperature,
and a structured environment similar to the one encountered in systems coupled
to the electromagnetic field that exists within a photonic crystal. While for
all the parameter regimes explored here, the algorithm performance is worsened
by the contact with a thermal environment, the picture appears to be different
when considering a structured environment. In this case we show that, by tuning
the environment parameters to certain regimes, the algorithm performance can
actually be improved with respect to the closed system case. Additionally, the
relevance of considering the dissipation rates as complex quantities is
discussed in both cases. More particularly, we find that the imaginary part of
the rates can not be neglected with the usual argument that it simply amounts
to an energy shift, and in fact influences crucially the system dynamics.Comment: 18 pages, 9 figure
Recommended from our members
Mouse Ooplasm Confers Context-Specific Reprogramming Capacity
Enucleated oocytes have the remarkable ability to reprogram somatic nuclei back to totipotency. Here we investigate genome-scale DNA methylation patterns after nuclear transfer and compare them to the dynamics at fertilization. We identify specific targets for DNA demethylation after nuclear transfer such as germ-line associated promoters, as well as unique limitations that include certain repetitive element classes.Stem Cell and Regenerative Biolog
Classical simulation of entanglement swapping with bounded communication
Entanglement appears under two different forms in quantum theory, namely as a
property of states of joint systems and as a property of measurement
eigenstates in joint measurements. By combining these two aspects of
entanglement, it is possible to generate nonlocality between particles that
never interacted, using the protocol of entanglement swapping. We show that
even in the more constraining bilocal scenario where distant sources of
particles are assumed to be independent, i.e. to share no prior randomness,
this process can be simulated classically with bounded communication, using
only 9 bits in total. Our result thus provides an upper bound on the
nonlocality of the process of entanglement swapping.Comment: 6 pages, 1 figur
Improved Error-Scaling for Adiabatic Quantum State Transfer
We present a technique that dramatically improves the accuracy of adiabatic
state transfer for a broad class of realistic Hamiltonians. For some systems,
the total error scaling can be quadratically reduced at a fixed maximum
transfer rate. These improvements rely only on the judicious choice of the
total evolution time. Our technique is error-robust, and hence applicable to
existing experiments utilizing adiabatic passage. We give two examples as
proofs-of-principle, showing quadratic error reductions for an adiabatic search
algorithm and a tunable two-qubit quantum logic gate.Comment: 10 Pages, 4 figures. Comments are welcome. Version substantially
revised to generalize results to cases where several derivatives of the
Hamiltonian are zero on the boundar
An Architecture for Data and Knowledge Acquisition for the Semantic Web: the AGROVOC Use Case
We are surrounded by ever growing volumes of unstructured and weakly-structured information, and for a human being, domain expert or not, it is nearly impossible to read, understand and categorize such information in a fair amount of time. Moreover, different user categories have different expectations: final users need easy-to-use tools and services for specific tasks, knowledge engineers require robust tools for knowledge acquisition, knowledge categorization and semantic resources development, while semantic applications developers demand for flexible frameworks for fast and easy, standardized development of complex applications. This work represents an experience report on the use of the CODA framework for rapid prototyping and deployment of knowledge acquisition systems for RDF. The system integrates independent NLP tools and custom libraries complying with UIMA standards. For our experiment a document set has been processed to populate the AGROVOC thesaurus with two new relationships
Security considerations for Galois non-dual RLWE families
We explore further the hardness of the non-dual discrete variant of the
Ring-LWE problem for various number rings, give improved attacks for certain
rings satisfying some additional assumptions, construct a new family of
vulnerable Galois number fields, and apply some number theoretic results on
Gauss sums to deduce the likely failure of these attacks for 2-power cyclotomic
rings and unramified moduli
Chosen-ciphertext security from subset sum
We construct a public-key encryption (PKE) scheme whose
security is polynomial-time equivalent to the hardness of the Subset Sum problem. Our scheme achieves the standard notion of indistinguishability against chosen-ciphertext attacks (IND-CCA) and can be used to encrypt messages of arbitrary polynomial length, improving upon a previous construction by Lyubashevsky, Palacio, and Segev (TCC 2010) which achieved only the weaker notion of semantic security (IND-CPA) and whose concrete security decreases with the length of the message being encrypted. At the core of our construction is a trapdoor technique which originates in the work of Micciancio and Peikert (Eurocrypt 2012
Mouse ooplasm confers context-specific reprogramming capacity
Enucleated oocytes have the distinctive ability to reprogram somatic nuclei back to totipotency. Here, we investigate genome-scale DNA methylation patterns after nuclear transfer and compare them to the dynamics at fertilization. We identify specific targets for DNA demethylation after nuclear transfer, such as germline-associated promoters, as well as unique limitations that include certain repetitive element classes.National Institutes of Health (U.S.) (Grant 5DP1OD003958
A unique regulatory phase of DNA methylation in the early mammalian embryo
DNA methylation is highly dynamic during mammalian embryogenesis. It is broadly accepted that the paternal genome is actively depleted of 5-methylcytosine at fertilization, followed by passive loss that reaches a minimum at the blastocyst stage. However, this model is based on limited data, and so far no base-resolution maps exist to support and refine it. Here we generate genome-scale DNA methylation maps in mouse gametes and from the zygote through post-implantation. We find that the oocyte already exhibits global hypomethylation, particularly at specific families of long interspersed element 1 and long terminal repeat retroelements, which are disparately methylated between gametes and have lower methylation values in the zygote than in sperm. Surprisingly, the oocyte contributes a unique set of differentially methylated regions (DMRs)—including many CpG island promoters—that are maintained in the early embryo but are lost upon specification and absent from somatic cells. In contrast, sperm-contributed DMRs are largely intergenic and become hypermethylated after the blastocyst stage. Our data provide a genome-scale, base-resolution timeline of DNA methylation in the pre-specified embryo, when this epigenetic modification is most dynamic, before returning to the canonical somatic pattern.Burroughs Wellcome (Career Award)National Institutes of Health (U.S.) (5RC1AA019317)National Institutes of Health (U.S.) (U01ES017155)National Institutes of Health (U.S.) (P01GM099117)National Human Genome Research Institute (U.S.) (1P50HG006193-01
- …
