528 research outputs found

    On the existence of quantum representations for two dichotomic measurements

    Full text link
    Under which conditions do outcome probabilities of measurements possess a quantum-mechanical model? This kind of problem is solved here for the case of two dichotomic von Neumann measurements which can be applied repeatedly to a quantum system with trivial dynamics. The solution uses methods from the theory of operator algebras and the theory of moment problems. The ensuing conditions reveal surprisingly simple relations between certain quantum-mechanical probabilities. It also shown that generally, none of these relations holds in general probabilistic models. This result might facilitate further experimental discrimination between quantum mechanics and other general probabilistic theories.Comment: 16+7 pages, presentation improved and minor errors correcte

    Strong Shift Equivalence of CC^*-correspondences

    Get PDF
    We define a notion of strong shift equivalence for CC^*-correspondences and show that strong shift equivalent CC^*-correspondences have strongly Morita equivalent Cuntz-Pimsner algebras. Our analysis extends the fact that strong shift equivalent square matrices with non-negative integer entries give stably isomorphic Cuntz-Krieger algebras.Comment: 26 pages. Final version to appear in Israel Journal of Mathematic

    Generalized multiresolution analyses with given multiplicity functions

    Get PDF
    Generalized multiresolution analyses are increasing sequences of subspaces of a Hilbert space \H that fail to be multiresolution analyses in the sense of wavelet theory because the core subspace does not have an orthonormal basis generated by a fixed scaling function. Previous authors have studied a multiplicity function mm which, loosely speaking, measures the failure of the GMRA to be an MRA. When the Hilbert space \H is L2(Rn)L^2(\mathbb R^n), the possible multiplicity functions have been characterized by Baggett and Merrill. Here we start with a function mm satisfying a consistency condition which is known to be necessary, and build a GMRA in an abstract Hilbert space with multiplicity function mm.Comment: 16 pages including bibliograph

    The noncommutative geometry of Yang-Mills fields

    Full text link
    We generalize to topologically non-trivial gauge configurations the description of the Einstein-Yang-Mills system in terms of a noncommutative manifold, as was done previously by Chamseddine and Connes. Starting with an algebra bundle and a connection thereon, we obtain a spectral triple, a construction that can be related to the internal Kasparov product in unbounded KK-theory. In the case that the algebra bundle is an endomorphism bundle, we construct a PSU(N)-principal bundle for which it is an associated bundle. The so-called internal fluctuations of the spectral triple are parametrized by connections on this principal bundle and the spectral action gives the Yang-Mills action for these gauge fields, minimally coupled to gravity. Finally, we formulate a definition for a topological spectral action.Comment: 14 page

    Twisted k-graph algebras associated to Bratteli diagrams

    Get PDF
    Given a system of coverings of k-graphs, we show that the cohomology of the resulting (k+1)-graph is isomorphic to that of any one of the k-graphs in the system. We then consider Bratteli diagrams of 2-graphs whose twisted C*-algebras are matrix algebras over noncommutative tori. For such systems we calculate the ordered K-theory and the gauge-invariant semifinite traces of the resulting 3-graph C*-algebras. We deduce that every simple C*-algebra of this form is Morita equivalent to the C*-algebra of a rank-2 Bratteli diagram in the sense of Pask-Raeburn-R{\o}rdam-Sims.Comment: 28 pages, pictures prepared using tik

    Wavelets and graph CC^*-algebras

    Full text link
    Here we give an overview on the connection between wavelet theory and representation theory for graph CC^{\ast}-algebras, including the higher-rank graph CC^*-algebras of A. Kumjian and D. Pask. Many authors have studied different aspects of this connection over the last 20 years, and we begin this paper with a survey of the known results. We then discuss several new ways to generalize these results and obtain wavelets associated to representations of higher-rank graphs. In \cite{FGKP}, we introduced the "cubical wavelets" associated to a higher-rank graph. Here, we generalize this construction to build wavelets of arbitrary shapes. We also present a different but related construction of wavelets associated to a higher-rank graph, which we anticipate will have applications to traffic analysis on networks. Finally, we generalize the spectral graph wavelets of \cite{hammond} to higher-rank graphs, giving a third family of wavelets associated to higher-rank graphs

    Generalized multiresolution analyses with given multiplicity functions

    Get PDF
    Generalized multiresolution analyses are increasing sequences of subspaces of a Hilbert space H that fail to be multiresolution analyses in the sense of wavelet theory because the core subspace does not have an orthonormal basis generated by a fixed scaling function. Previous authors have studied a multiplicity function m which, loosely speaking, measures the failure of the GMRA to be an MRA. When the Hilbert space H is L2(Rn), the possible multiplicity functions have been characterized by Baggett and Merrill. Here we start with a function m satisfying a consistency condition which is known to be necessary, and build a GMRA in an abstract Hilbert space with multiplicity function m

    Quantized reduction as a tensor product

    Full text link
    Symplectic reduction is reinterpreted as the composition of arrows in the category of integrable Poisson manifolds, whose arrows are isomorphism classes of dual pairs, with symplectic groupoids as units. Morita equivalence of Poisson manifolds amounts to isomorphism of objects in this category. This description paves the way for the quantization of the classical reduction procedure, which is based on the formal analogy between dual pairs of Poisson manifolds and Hilbert bimodules over C*-algebras, as well as with correspondences between von Neumann algebras. Further analogies are drawn with categories of groupoids (of algebraic, measured, Lie, and symplectic type). In all cases, the arrows are isomorphism classes of appropriate bimodules, and their composition may be seen as a tensor product. Hence in suitable categories reduction is simply composition of arrows, and Morita equivalence is isomorphism of objects.Comment: 44 pages, categorical interpretation adde
    corecore