3,941 research outputs found

    Physiological cost of walking in those with chronic fatigue syndrome

    Get PDF
    <b>Purpose:</b> To examine the physiological cost of walking in subjects with chronic fatigue syndrome (CFS) and a matched control group, walking at their preferred and at matched walking speeds. <b>Methods:</b> Seventeen people with CFS and 17 matched-controls participated in this observational study of physiological cost during over-ground gait. Each subject walked for 5 min at their preferred walking speed (PWS). Controls then walked for 5 min at the same pace of their matched CFS subject. Gait speed and oxygen uptake, gross and net were measured and oxygen uptake was expressed per unit distance ambulated. CFS subjects completed the CFS-Activities and Participation Questionnaire (CFS-APQ). <b>Results:</b> At PWS the CFS group walked at a slower velocity of 0.84 ± 0.21 m s<sup>-1</sup> compared to controls with a velocity of 1.19 ± 0.13 m s<sup>-1</sup> (p < 0.001). At PWS both gross and net oxygen uptake of CFS subjects was significantly less than controls (p = 0.023 and p = 0.025 respectively). At matched-velocity both gross and net physiological cost of gait was greater for CFS subjects than controls (p = 0.048 and p = 0.001, respectively). <b>Conclusion:</b> The physiological cost of walking was significantly greater for people with CFS compared with healthy subjects. The reasons for these higher energy demands for walking in those with CFS have yet to be fully elucidated

    Proceedings of the Second International Mobile Satellite Conference (IMSC 1990)

    Get PDF
    Presented here are the proceedings of the Second International Mobile Satellite Conference (IMSC), held June 17-20, 1990 in Ottawa, Canada. Topics covered include future mobile satellite communications concepts, aeronautical applications, modulation and coding, propagation and experimental systems, mobile terminal equipment, network architecture and control, regulatory and policy considerations, vehicle antennas, and speech compression

    Gait characteristics of subjects with chronic fatigue syndrome and controls at self-selected and matched velocities

    Get PDF
    Background: Gait abnormalities have been reported in individuals with Chronic Fatigue Syndrome (CFS) however no studies exist to date investigating the kinematics of individuals with CFS in over-ground gait. The aim of this study was to compare the over-ground gait pattern (sagittal kinematics and temporal and spatial) of individuals with CFS and control subjects at their self-selected and at matched velocities. Methods: Twelve individuals with CFS and 12 matched controls participated in the study. Each subject walked along a 7.2 m walkway three times at each of three velocities: self-selected, relatively slow (0.45 ms-1) and a relatively fast (1.34 ms-1). A motion analysis system was used to investigate the sagittal plane joint kinematics and temporal spatial parameters of gait. Results: At self-selected velocity there were significant differences between the two groups for all the temporal and spatial parameters measured, including gait velocity (P = 0.002). For the kinematic variables the significant differences were related to both ankles during swing and the right ankle during stance. At the relatively slower velocity the kinematic differences were replicated. However, the step distances decreased in the CFS population for the temporal and spatial parameters. When the gait pattern of the individuals with CFS at the relatively fast walking velocity (1.30 ± 0.24 ms-1) was compared to the control subjects at their self-selected velocity (1.32 ± 0.15 ms-1) the gait pattern of the two groups was very similar, with the exception of both ankles during swing. Conclusion: The self-selected gait velocity and/or pattern of individuals with CFS may be used to monitor the disease process or evaluate therapeutic intervention. These differences may be a reflection of the relatively low self-selected gait velocity of individuals with CFS rather than a manifestation of the condition itself

    Kinematic, kinetic and electromyographic response to customized foot orthoses in patients with tibialis posterior tenosynovitis, pes plano valgus and rheumatoid arthritis

    Get PDF
    Objective. To describe the effect of customized foot orthoses (FOs) on the kinematic, kinetic and EMG features in patients with RA, tibialis posterior (TP) tenosynovitis and associated pes plano valgus.<p></p> Methods. Patients with RA and US-confirmed tenosynovitis of TP underwent gait analysis, including three-dimensional (3D) kinematics, kinetics, intramuscular EMG of TP and surface EMG of tibialis anterior, peroneus longus, soleus and medial gastrocnemius. Findings were compared between barefoot and shod with customized FO conditions.<p></p> Results. Ten patients with RA with a median (range) disease duration of 3 (1–18) years were recruited. Moderate levels of foot pain and foot-related impairment and disability were present with moderately active disease states. Altered timing of the soleus (P = 0.05) and medial gastrocnemius (P = 0.02) and increased magnitude of tibialis anterior (P = 0.03) were noted when barefoot was compared with shod with FO. Trends were noted for reduced TP activity in the contact period (P = 0.09), but this did not achieve statistical significance. Differences in foot motion characteristics were recorded for peak rearfoot eversion (P = 0.01), peak rearfoot plantarflexion (P < 0.001) and peak forefoot abduction (P = 0.02) in the shod with FOs compared with barefoot conditions. No differences in kinetic variables were recorded.<p></p> Conclusion. This study has demonstrated, for the first time, alterations in muscle activation profiles and foot motion characteristics in patients with RA, pes plano valgus and US-confirmed TP tenosynovitis in response to customized FOs. Complex adaptations were evident in this cohort and further work is required to determine whether these functional alterations lead to improvements in patient symptoms.<p></p&gt

    A Novel Cable-Driven Robotic Training Improves Locomotor Function in Individuals Post-Stroke

    Get PDF
    A novel cable-driven robotic gait training system has been tested to improve the locomotor function in individuals post stroke. Seven subjects with chronic stroke were recruited to participate in this 6 weeks robot-assisted treadmill training paradigm. A controlled assistance force was applied to the paretic leg at the ankle through a cable-driven robotic system. The force was applied from late stance to mid-swing during treadmill training. Body weight support was provided as necessary to prevent knee buckling or toe drag. Subjects were trained 3 times a week for 6 weeks. Overground gait speed, 6 minute walking distance, and balance were evaluated at pre, post 6 weeks robotic training, and at 8 weeks follow up. Significant improvements in gait speed and 6 minute walking distance were obtained following robotic treadmill training through a cable-driven robotic system. Results from this study indicate that it is feasible to improve the locomotor function in individuals post stroke through a flexible cable-driven robot

    Jet Interactions with the Hot Halos of Clusters and Galaxies

    Get PDF
    X-ray observations of cavities and shock fronts produced by jets streaming through hot halos have significantly advanced our understanding of the energetics and dynamics of extragalactic radio sources. Radio sources at the centers of clusters have dynamical ages between ten and several hundred million years. They liberate between 1E58-1E62 erg per outburst, which is enough energy to regulate cooling of hot halos from galaxies to the richest clusters. Jet power scales approximately with the radio synchrotron luminosity to the one half power. However, the synchrotron efficiency varies widely from nearly unity to one part in 10,000, such that relatively feeble radio source can have quasar-like mechanical power. The synchrotron ages of cluster radio sources are decoupled from their dynamical ages, which tend to be factors of several to orders of magnitude older. Magnetic fields and particles in the lobes tend to be out of equipartition. The lobes may be maintained by heavy particles (e.g., protons), low energy electrons, a hot, diffuse thermal gas, or possibly magnetic (Poynting) stresses. Sensitive X-ray images of shock fronts and cavities can be used to study the dynamics of extragalactic radio sources.Comment: 10 pages, 3 figures, invited review, "Extragalactic Jets: Theory and Observation from Radio to Gamma Ray, held in Girdwood, Alaska, U.S.A. 21-24 May, 2007, minor text changes; one added referenc

    Combined trellis coding and feedforward processing for MSS applications

    Get PDF
    The idea of using a multiple (more than two) symbol observation interval to improve error probability performance is applied to differential detection of trellis coded MPSK over a mobile satellite (fading) channel. Results are obtained via computer simulation. It is shown that only a slight increase (e.g., one symbol) in the length of the observation interval will provide a significant improvement in bit error probability performance both in AWGN and fading environments

    Measuring situation awareness in complex systems: Comparison of measures study

    Get PDF
    Situation Awareness (SA) is a distinct critical commodity for teams working in complex industrial systems and its measurement is a key provision in system, procedural and training design efforts. This article describes a study that was undertaken in order to compare three different SA measures (a freeze probe recall approach, a post trial subjective rating approach and a critical incident interview technique) when used to assess participant SA during a military planning task. The results indicate that only the freeze probe recall method produced a statistically significant correlation with performance on the planning task and also that there was no significant correlation between the three methods, which suggests that they were effectively measuring different things during the trials. In conclusion, the findings, whilst raising doubts over the validity of post trial subjective rating and interview-based approaches, offer validation evidence for the use of freeze probe recall approaches to measure SA. The findings are subsequently discussed with regard to their implications for the future measurement of SA in complex collaborative systems

    An Energetic AGN Outburst Powered by a Rapidly Spinning Supermassive Black Hole or an Accreting Ultramassive Black Hole

    Full text link
    Powering the 10^62 erg nuclear outburst in the MS0735.6+7421 cluster central galaxy by accretion implies that its supermassive black hole (SMBH) grew by ~6x10^8 solar masses over the past 100 Myr. We place upper limits on the amount of cold gas and star formation near the nucleus of <10^9 solar masses and <2 solar masses per year, respectively. These limits imply that an implausibly large fraction of the preexisting cold gas in the bulge must have been consumed by its SMBH at the rate of ~3-5 solar masses per year while leaving no trace of star formation. Such a high accretion rate would be difficult to maintain by stellar accretion or the Bondi mechanism, unless the black hole mass approaches 10^11 solar masses. Its feeble nuclear luminosities in the UV, I, and X-ray bands compared to its enormous mechanical power are inconsistent with rapid accretion onto a ~5x10^9 solar mass black hole. We suggest instead that the AGN outburst is powered by a rapidly-spinning black hole. A maximally-spinning, 10^9 solar mass black hole contains enough rotational energy, ~10^62 erg, to quench a cooling flow over its lifetime and to contribute significantly to the excess entropy found in the hot atmospheres of groups and clusters. Two modes of AGN feedback may be quenching star formation in elliptical galaxies centered in cooling halos at late times. An accretion mode that operates in gas-rich systems, and a spin mode operating at modest accretion rates. The spin conjecture may be avoided in MS0735 by appealing to Bondi accretion onto a central black hole whose mass greatly exceeds 10^10 solar mass. The host galaxy's unusually large, 3.8 kpc stellar core radius (light deficit) may witness the presence of an ultramassive black hole.Comment: Accepted for publication in ApJ. Modifications: adopted slightly higher black hole mass using Lauer's M_SMBH vs L_bulge relation and adjusted related quantities; considered more seriously the consequences of a ultramassive black hole, motivated by new Kormendy & Bender paper published after our submission; other modifications per referee comments by Ruszkowsk
    corecore