6,022 research outputs found
Diagnostics of macroscopic quantum states of Bose-Einstein condensate in double-well potential by nonstationary Josephson effect
We propose a method of diagnostic of a degenerate ground state of Bose
condensate in a double well potential. The method is based on the study of the
one-particle coherent tunneling under switching the time-dependent weak
Josephson coupling between the wells. We obtain a simple expression that allows
to determine the phase of the condensate and the total number of the particles
in the condensate from the relative number of the particles in two wells
measured before the Josephson coupling is switched on and
after it is switched off. The specifics of the application of the method in the
cases of the external and the internal Josephson effect are discussed.Comment: 3 page
Remarks on non-gaussian fluctuations of the inflaton and constancy of \zeta outside the horizon
We point out that the non-gaussianity arising from cubic self interactions of
the inflaton field is proportional to \xi N_e where \xi ~ V"' and N_e is the
number of e-foldings from horizon exit till the end of inflation. For scales of
interest N_e = 60, and for models of inflation such as new inflation, natural
inflation and running mass inflation \xi is large compared to the slow roll
parameter \epsilon ~ V'^{2}. Therefore the contribution from self interactions
should not be outrightly ignored while retaining other terms in the
non-gaussianity parameter f_{NL}. But the N_e dependent term seems to imply the
growth of non-gaussianities outside the horizon. Therefore we briefly discuss
the issue of the constancy of correlations of the curvature perturbation \zeta
outside the horizon. We then calculate the 3-point function of the inflaton
fluctuations using the canonical formalism and further obtain the 3-point
function of \zeta_k. We find that the N_e dependent contribution to f_{NL} from
self interactions of the inflaton field is cancelled by contributions from
other terms associated with non-linearities in cosmological perturbation
theory.Comment: 16 pages, Minor changes, matches the published version. v3: Minor
typo correcte
Quantum versus Semiclassical Description of Selftrapping: Anharmonic Effects
Selftrapping has been traditionally studied on the assumption that
quasiparticles interact with harmonic phonons and that this interaction is
linear in the displacement of the phonon. To complement recent semiclassical
studies of anharmonicity and nonlinearity in this context, we present below a
fully quantum mechanical analysis of a two-site system, where the oscillator is
described by a tunably anharmonic potential, with a square well with infinite
walls and the harmonic potential as its extreme limits, and wherein the
interaction is nonlinear in the oscillator displacement. We find that even
highly anharmonic polarons behave similar to their harmonic counterparts in
that selftrapping is preserved for long times in the limit of strong coupling,
and that the polaronic tunneling time scale depends exponentially on the
polaron binding energy. Further, in agreement, with earlier results related to
harmonic polarons, the semiclassical approximation agrees with the full quantum
result in the massive oscillator limit of small oscillator frequency and strong
quasiparticle-oscillator coupling.Comment: 10 pages, 6 figures, to appear in Phys. Rev.
Two Suns in The Sky: Stellar Multiplicity in Exoplanet Systems
We present results of a reconnaissance for stellar companions to all 131
radial-velocity-detected candidate extrasolar planetary systems known as of
July 1, 2005. CPM companions were investigated using the multi-epoch DSS
images, and confirmed by matching the trigonometric parallax distances of the
primaries to companion distances estimated photometrically. We also attempt to
confirm or refute companions listed in the Washington Double Star Catalog, the
Catalogs of Nearby Stars, in Hipparcos results, and in Duquennoy & Mayor
(1991).
Our findings indicate that a lower limit of 30 (23%) of the 131 exoplanet
systems have stellar companions. We report new stellar companions to HD 38529
and HD 188015, and a new candidate companion to HD 169830. We confirm many
previously reported stellar companions, including six stars in five systems
that are recognized for the first time as companions to exoplanet hosts. We
have found evidence that 20 entries in the Washington Double Star Catalog are
not gravitationally bound companions. At least three, and possibly five, of the
exoplanet systems reside in triple star systems. Three exoplanet systems have
potentially close-in stellar companions ~ 20 AU away from the primary. Finally,
two of the exoplanet systems contain white dwarf companions. This comprehensive
assessment of exoplanet systems indicates that solar systems are found in a
variety of stellar multiplicity environments - singles, binaries, and triples;
and that planets survive the post-main-sequence evolution of companion stars.Comment: 52 pages, 7 figures, Accepted for publication in Ap
Optical properties of bialkali photocathodes
The optical properties of the `bialkali' KCsSb and RbCsSb photomultiplier
cathodes have been experimentally investigated in the visible range. The
measurements carried out include the absolute reflectance at near-normal
incidence, the polarization-dependent relative reflectance at various angles
and the change in polarization upon reflection from the photocathode. These
experimental inputs have been combined with a theoretical model to determine
the complex refractive index of the photocathodes in the wavelength range 380
to 680 nm and their thickness. As a result of this work, we derive a model
which predicts the fraction of light impinging on a photomultiplier tube that
is reflected, absorbed or transmitted, as a function of wavelength and angle,
and dependent on the medium to which the photomultiplier is coupled.Comment: 51 pages (double spacing), 16 figures, submitted for publication in
NIM
Testing goGPS low-cost RTK positioning with a web-based track log management system
Location-based online collaborative platforms are proving to be an effective and widely adopted solution for geospatial data collection, update and sharing. Popular collaborative projects like OpenStreetMap, Wikimapia and other services that collect and publish user-generated geographic contents have been fostered by the increasing availability of location-aware palmtop devices. These instruments include GPS-enabled mobile phones and low-cost GPS receivers, which are employed for quick field surveys at both professional and non-professional levels. Nevertheless, data collected with such devices are often not accurate enough to avoid heavy user intervention before using or sharing them. Providing tools for collecting and sharing accuracy-enhanced positioning data to a wide and diverse user base requires to integrate modern web technologies and online services with advanced satellite positioning techniques. A web-based prototype system for enhancing GPS tracks quality and managing track logs and points of interest (POI), originally developed using standard GPS devices, was tested by using goGPS software to apply kinematic relative positioning (RTK) with low-cost single-frequency receivers. The workflow consists of acquiring raw GPS measurements from the user receiver and from a network of permanent GPS stations, processing them by RTK positioning within goGPS Kalman filter algorithm, sending the accurate positioning data to the web-based system, performing further quality enhancements if needed, logging the data and displaying them. The whole system can work either in real-time or post-processing, the latter providing a solution to collect and publish enhanced location data without necessarily requiring mobile Internet connection on the field. Tests were performed in open areas and variously dense urban environments, comparing different indices for quality-based filtering. Results are promising and suggest that the integration of web technologies with advanced geodetic techniques applied to low-cost instruments can be an effective solution to collect, update and share accurate location data on collaborative platforms
Dynamics and Berry phase of two-species Bose-Einstein condensates
In terms of exact solutions of the time-dependent Schrodinger equation for an
effective giant spin modeled from a coupled two-mode Bose-Einstein condensate
(BEC) with adiabatic and cyclic time-varying Raman coupling between two
hyperfine states of the BEC, we obtain analytic time-evolution formulas of the
population imbalance and relative phase between two components with various
initial states, especially the SU(2)coherent state. We find the Berry phase
depending on the number parity of atoms, and particle number dependence of the
collapse revival of population-imbalance oscillation. It is shown that
self-trapping and phase locking can be achieved from initial SU(2) coherent
states with proper parameters.Comment: 18 pages,5 figure
Unknowns after the SNO Charged-Current Measurement
We perform a model-independent analysis of solar neutrino flux rates
including the recent charged-current measurement at the Sudbury Neutrino
Observatory (SNO). We derive a universal sum rule involving SNO and
SuperKamiokande rates, and show that the SNO neutral-current measurement can
not fix the fraction of solar oscillating to sterile neutrinos. The
large uncertainty in the SSM B flux impedes a determination of the sterile
neutrino fraction.Comment: Version to appear in PRL; includes analysis with anticipated SNO NC
measuremen
- …
