619 research outputs found
Variations of the Atlantic meridional overturning circulation in control and transient simulations of the last millennium
The variability of the Atlantic meridional overturing circulation (AMOC) strength is investigated in control experiments and in transient simulations of up to the last millennium using the low-resolution Community Climate System Model version 3. In the transient simulations the AMOC exhibits enhanced low-frequency variability that is mainly caused by infrequent transitions between two semi-stable circulation states which amount to a 10 percent change of the maximum overturning. One transition is also found in a control experiment, but the time-varying external forcing significantly increases the probability of the occurrence of such events though not having a direct, linear impact on the AMOC. The transition from a high to a low AMOC state starts with a reduction of the convection in the Labrador and Irminger Seas and goes along with a changed barotropic circulation of both gyres in the North Atlantic and a gradual strengthening of the convection in the Greenland-Iceland-Norwegian (GIN) Seas. In contrast, the transition from a weak to a strong overturning is induced by decreased mixing in the GIN Seas. As a consequence of the transition, regional sea surface temperature (SST) anomalies are found in the midlatitude North Atlantic and in the convection regions with an amplitude of up to 3 K. The atmospheric response to the SST forcing associated with the transition indicates a significant impact on the Scandinavian surface air temperature (SAT) in the order of 1 K. Thus, the changes of the ocean circulation make a major contribution to the Scandinavian SAT variability in the last millennium
Amorphous thin film growth: theory compared with experiment
Experimental results on amorphous ZrAlCu thin film growth and the dynamics of
the surface morphology as predicted from a minimal nonlinear stochastic
deposition equation are analysed and compared. Key points of this study are (i)
an estimation procedure for coefficients entering into the growth equation and
(ii) a detailed analysis and interpretation of the time evolution of the
correlation length and the surface roughness. The results corroborate the
usefulness of the deposition equation as a tool for studying amorphous growth
processes.Comment: 7 pages including 5 figure
Final Report: Buffalo National River Ecosystems
The objective of this study was to sample the Buffalo River on a seasonal basis for a year, in order to determine whether any potential water quality problems existed
Compact Frontend-Electronics and Bidirectional 3.3 Gbps Optical Datalink for Fast Proportional Chamber Readout
The 9600 channels of the multi-wire proportional chamber of the H1 experiment
at HERA have to be read out within 96 ns and made available to the trigger
system. The tight spatial conditions at the rear end flange require a compact
bidirectional readout electronics with minimal power consumption and dead
material.
A solution using 40 identical optical link modules, each transferring the
trigger information with a physical rate of 4 x 832 Mbps via optical fibers,
has been developed and commisioned. The analog pulses from the chamber can be
monitored and the synchronization to the global HERA clock signal is ensured.Comment: 13 pages, 10 figure
A -Vertex Kernel for Maximum Internal Spanning Tree
We consider the parameterized version of the maximum internal spanning tree
problem, which, given an -vertex graph and a parameter , asks for a
spanning tree with at least internal vertices. Fomin et al. [J. Comput.
System Sci., 79:1-6] crafted a very ingenious reduction rule, and showed that a
simple application of this rule is sufficient to yield a -vertex kernel.
Here we propose a novel way to use the same reduction rule, resulting in an
improved -vertex kernel. Our algorithm applies first a greedy procedure
consisting of a sequence of local exchange operations, which ends with a
local-optimal spanning tree, and then uses this special tree to find a
reducible structure. As a corollary of our kernel, we obtain a deterministic
algorithm for the problem running in time
Ka-Band Link Study and Analysis for a Mars Hybrid RF/Optical Software Defined Radio
The integrated radio and optical communications (iROC) project at the NASA Glenn Research Center (GRC) is investigating the feasibility of a hybrid RF and optical communication subsystem for future deep space missions. The hybrid communications subsystem enables the advancement of optical communications while simultaneously mitigating the risk of infusion by combining an experimental optical transmitter and telescope with a reliable Ka-band RF transmitter and antenna. The iROC communications subsystem seeks to maximize the total data return over the course of a potential 2-year mission in Mars orbit beginning in 2021. Although optical communication by itself offers potential for greater data return over RF, the reliable Ka-band link is also being designed for high data return capability in this hybrid system. A daily analysis of the RF link budget over the 2-year span is performed to optimize and provide detailed estimates of the RF data return. In particular, the bandwidth dependence of these data return estimates is analyzed for candidate waveforms. In this effort, a data return modeling tool was created to analyze candidate RF modulation and coding schemes with respect to their spectral efficiency, amplifier output power back-off, required digital to analog conversion (DAC) sampling rates, and support by ground receivers. A set of RF waveforms is recommended for use on the iROC platform
Design and Tests of the Silicon Sensors for the ZEUS Micro Vertex Detector
To fully exploit the HERA-II upgrade,the ZEUS experiment has installed a
Micro Vertex Detector (MVD) using n-type, single-sided, silicon micro-strip
sensors with capacitive charge division. The sensors have a readout pitch of
120 micrometers, with five intermediate strips (20 micrometer strip pitch). The
designs of the silicon sensors and of the test structures used to verify the
technological parameters, are presented. Results on the electrical measurements
are discussed. A total of 1123 sensors with three different geometries have
been produced by Hamamatsu Photonics K.K. Irradiation tests with reactor
neutrons and Co-60 photons have been performed for a small sample of sensors.
The results on neutron irradiation (with a fluence of 1 x 10^{13} 1 MeV
equivalent neutrons / cm^2) are well described by empirical formulae for bulk
damage. The Co-60 photons (with doses up to 2.9 kGy) show the presence of
generation currents in the SiO_2-Si interface, a large shift of the flatband
voltage and a decrease of the hole mobility.Comment: 33 pages, 25 figures, 3 tables, accepted for publication in NIM
Recurrent climate winter regimes in reconstructed and modelled 500hPa geopotential height fields over the North Atlantic/European sector 1659-1990
Recurrent climate winter regimes are examined from statistically reconstructed and modelled 500hPa geopotential height fields over the North Atlantic/European sector for the period 1659-1990. We investigate the probability density function of the state space spanned by the first two empirical orthogonal functions of combined winter data. Regimes are detected as patterns that correspond to areas of the state space with an unexpected high recurrence probability using a Monte Carlo approach. The reconstruction and the model reveal four recurrent climate regimes. They correspond to the two phases of the North Atlantic Oscillation and two opposite blocking patterns. Complemented by the investigation of the temporal evolution of the climate regimes this leads to the conclusion that the reconstructed and the modelled data for this geographic sector reproduce low-frequency atmospheric variability in the form of regime-like behaviour. The overall evidence for recurrent climate regimes is higher for the model than for the reconstruction. However, comparisons with independent data sources for the period 1659-1990 revealed a more realistic temporal evolution of the regimes for the reconstructed dat
Beam Test of Silicon Strip Sensors for the ZEUS Micro Vertex Detector
For the HERA upgrade, the ZEUS experiment has designed and installed a high
precision Micro Vertex Detector (MVD) using single sided micro-strip sensors
with capacitive charge division. The sensors have a readout pitch of 120
microns, with five intermediate strips (20 micron strip pitch). An extensive
test program has been carried out at the DESY-II testbeam facility. In this
paper we describe the setup developed to test the ZEUS MVD sensors and the
results obtained on both irradiated and non-irradiated single sided micro-strip
detectors with rectangular and trapezoidal geometries. The performances of the
sensors coupled to the readout electronics (HELIX chip, version 2.2) have been
studied in detail, achieving a good description by a Monte Carlo simulation.
Measurements of the position resolution as a function of the angle of incidence
are presented, focusing in particular on the comparison between standard and
newly developed reconstruction algorithms.Comment: 41 pages, 21 figures, 2 tables, accepted for publication in NIM
Mixtures in non stable Levy processes
We analyze the Levy processes produced by means of two interconnected classes
of non stable, infinitely divisible distribution: the Variance Gamma and the
Student laws. While the Variance Gamma family is closed under convolution, the
Student one is not: this makes its time evolution more complicated. We prove
that -- at least for one particular type of Student processes suggested by
recent empirical results, and for integral times -- the distribution of the
process is a mixture of other types of Student distributions, randomized by
means of a new probability distribution. The mixture is such that along the
time the asymptotic behavior of the probability density functions always
coincide with that of the generating Student law. We put forward the conjecture
that this can be a general feature of the Student processes. We finally analyze
the Ornstein--Uhlenbeck process driven by our Levy noises and show a few
simulation of it.Comment: 28 pages, 3 figures, to be published in J. Phys. A: Math. Ge
- …
