322 research outputs found
A Quantum Tweezer for Atoms
We propose a quantum tweezer for extracting a desired number of neutral atoms
from a reservoir. A trapped Bose-Einstein condensate (BEC) is used as the
reservoir, taking advantage of its coherent nature, which can guarantee a
constant outcome. The tweezer is an attractive quantum dot, which may be
generated by red-detuned laser light. By moving with certain speeds, the dot
can extract a desired number of atoms from the BEC through Landau-Zener
tunneling. The feasibility of our quantum tweezer is demonstrated through
realistic and extensive model calculations.Comment: 4 pages, 6 figures Revised versio
Laser cooling of trapped ytterbium ions with an ultraviolet diode laser
We demonstrate an ultraviolet diode laser system for cooling of trapped
ytterbium ions. The laser power and linewidth are comparable to previous
systems based on resonant frequency doubling, but the system is simpler, more
robust, and less expensive. We use the laser system to cool small numbers of
ytterbium ions confined in a linear Paul trap. From the observed spectra, we
deduce final temperatures < 270 mK.Comment: submitted to Opt. Let
Decoherence in Ion Trap Quantum Computers
The {\it intrinsic} decoherence from vibrational coupling of the ions in the
Cirac-Zoller quantum computer [Phys. Rev. Lett. {\bf 74}, 4091 (1995)] is
considered. Starting from a state in which the vibrational modes are at a
temperature , and each ion is in a superposition of an excited and a ground
state, an adiabatic approximation is used to find the inclusive probability
for the ions to evolve as they would without the vibrations, and for the
vibrational modes to evolve into any final state. An analytic form is found for
at , and the decoherence time is found for all . The decoherence
is found to be quite small, even for 1000 ions.Comment: 11 pages, no figures, uses revte
Statistical Mechanics of an Optical Phase Space Compressor
We describe the statistical mechanics of a new method to produce very cold
atoms or molecules. The method results from trapping a gas in a potential well,
and sweeping through the well a semi-permeable barrier, one that allows
particles to leave but not to return. If the sweep is sufficiently slow, all
the particles trapped in the well compress into an arbitrarily cold gas. We
derive analytical expressions for the velocity distribution of particles in the
cold gas, and compare these results with numerical simulations.Comment: 7 pages, 3 figure
Transverse confinement in stochastic cooling of trapped atoms
Stochastic cooling of trapped atoms is considered for a laser-beam
configuration with beam waists equal or smaller than the extent of the atomic
cloud. It is shown, that various effects appear due to this transverse
confinement, among them heating of transverse kinetic energy. Analytical
results of the cooling in dependence on size and location of the laser beam are
presented for the case of a non-degenerate vapour.Comment: 14 pages, 5 figures, accepted for publication in Journal of Optics
Complementarity and Young's interference fringes from two atoms
The interference pattern of the resonance fluorescence from a J=1/2 to J=1/2
transition of two identical atoms confined in a three-dimensional harmonic
potential is calculated. Thermal motion of the atoms is included. Agreement is
obtained with experiments [Eichmann et al., Phys. Rev. Lett. 70, 2359 (1993)].
Contrary to some theoretical predictions, but in agreement with the present
calculations, a fringe visibility greater than 50% can be observed with
polarization-selective detection. The dependence of the fringe visibility on
polarization has a simple interpretation, based on whether or not it is
possible in principle to determine which atom emitted the photon.Comment: 12 pages, including 7 EPS figures, RevTex. Submitted to Phys. Rev.
Strong relative intensity squeezing by 4-wave mixing in Rb vapor
We have measured -3.5 dB (-8.1 dB corrected for losses) relative intensity
squeezing between the probe and conjugate beams generated by stimulated,
nondegenerate four-wave mixing in hot rubidium vapor. Unlike early observations
of squeezing in atomic vapors based on saturation of a two-level system, our
scheme uses a resonant nonlinearity based on ground-state coherences in a
three-level system. Since this scheme produces narrowband, squeezed light near
an atomic resonance it is of interest for experiments involving cold atoms or
atomic ensembles.Comment: Submitted to Optics Letter
Direct Observation of Sub-Poissonian Number Statistics in a Degenerate Bose Gas
We report the direct observation of sub-Poissonian number fluctuation for a
degenerate Bose gas confined in an optical trap. Reduction of number
fluctuations below the Poissonian limit is observed for average numbers that
range from 300 to 60 atoms.Comment: 5 pages, 4 figure
Improvement by laser quenching of an "atom diode": a one-way barrier for ultra-cold atoms
Different laser devices working as ``atom diodes'' or ``one-way barriers''
for ultra-cold atoms have been proposed recently. They transmit ground state
level atoms coming from one side, say from the left, but reflect them when they
come from the other side. We combine a previous model, consisting of the
stimulated Raman adiabatic passage (STIRAP) from the ground to an excited state
and a state-selective mirror potential, with a localized quenching laser which
produces spontaneous decay back to the ground state. This avoids backwards
motion, provides more control of the decay process and therefore a more compact
and useful device.Comment: 6 page
- …
