322 research outputs found

    A Quantum Tweezer for Atoms

    Full text link
    We propose a quantum tweezer for extracting a desired number of neutral atoms from a reservoir. A trapped Bose-Einstein condensate (BEC) is used as the reservoir, taking advantage of its coherent nature, which can guarantee a constant outcome. The tweezer is an attractive quantum dot, which may be generated by red-detuned laser light. By moving with certain speeds, the dot can extract a desired number of atoms from the BEC through Landau-Zener tunneling. The feasibility of our quantum tweezer is demonstrated through realistic and extensive model calculations.Comment: 4 pages, 6 figures Revised versio

    Laser cooling of trapped ytterbium ions with an ultraviolet diode laser

    Full text link
    We demonstrate an ultraviolet diode laser system for cooling of trapped ytterbium ions. The laser power and linewidth are comparable to previous systems based on resonant frequency doubling, but the system is simpler, more robust, and less expensive. We use the laser system to cool small numbers of ytterbium ions confined in a linear Paul trap. From the observed spectra, we deduce final temperatures < 270 mK.Comment: submitted to Opt. Let

    Decoherence in Ion Trap Quantum Computers

    Full text link
    The {\it intrinsic} decoherence from vibrational coupling of the ions in the Cirac-Zoller quantum computer [Phys. Rev. Lett. {\bf 74}, 4091 (1995)] is considered. Starting from a state in which the vibrational modes are at a temperature TT, and each ion is in a superposition of an excited and a ground state, an adiabatic approximation is used to find the inclusive probability P(t)P(t) for the ions to evolve as they would without the vibrations, and for the vibrational modes to evolve into any final state. An analytic form is found for P(t)P(t) at T=0T=0, and the decoherence time is found for all TT. The decoherence is found to be quite small, even for 1000 ions.Comment: 11 pages, no figures, uses revte

    Statistical Mechanics of an Optical Phase Space Compressor

    Full text link
    We describe the statistical mechanics of a new method to produce very cold atoms or molecules. The method results from trapping a gas in a potential well, and sweeping through the well a semi-permeable barrier, one that allows particles to leave but not to return. If the sweep is sufficiently slow, all the particles trapped in the well compress into an arbitrarily cold gas. We derive analytical expressions for the velocity distribution of particles in the cold gas, and compare these results with numerical simulations.Comment: 7 pages, 3 figure

    Transverse confinement in stochastic cooling of trapped atoms

    Full text link
    Stochastic cooling of trapped atoms is considered for a laser-beam configuration with beam waists equal or smaller than the extent of the atomic cloud. It is shown, that various effects appear due to this transverse confinement, among them heating of transverse kinetic energy. Analytical results of the cooling in dependence on size and location of the laser beam are presented for the case of a non-degenerate vapour.Comment: 14 pages, 5 figures, accepted for publication in Journal of Optics

    Complementarity and Young's interference fringes from two atoms

    Get PDF
    The interference pattern of the resonance fluorescence from a J=1/2 to J=1/2 transition of two identical atoms confined in a three-dimensional harmonic potential is calculated. Thermal motion of the atoms is included. Agreement is obtained with experiments [Eichmann et al., Phys. Rev. Lett. 70, 2359 (1993)]. Contrary to some theoretical predictions, but in agreement with the present calculations, a fringe visibility greater than 50% can be observed with polarization-selective detection. The dependence of the fringe visibility on polarization has a simple interpretation, based on whether or not it is possible in principle to determine which atom emitted the photon.Comment: 12 pages, including 7 EPS figures, RevTex. Submitted to Phys. Rev.

    Strong relative intensity squeezing by 4-wave mixing in Rb vapor

    Get PDF
    We have measured -3.5 dB (-8.1 dB corrected for losses) relative intensity squeezing between the probe and conjugate beams generated by stimulated, nondegenerate four-wave mixing in hot rubidium vapor. Unlike early observations of squeezing in atomic vapors based on saturation of a two-level system, our scheme uses a resonant nonlinearity based on ground-state coherences in a three-level system. Since this scheme produces narrowband, squeezed light near an atomic resonance it is of interest for experiments involving cold atoms or atomic ensembles.Comment: Submitted to Optics Letter

    Direct Observation of Sub-Poissonian Number Statistics in a Degenerate Bose Gas

    Full text link
    We report the direct observation of sub-Poissonian number fluctuation for a degenerate Bose gas confined in an optical trap. Reduction of number fluctuations below the Poissonian limit is observed for average numbers that range from 300 to 60 atoms.Comment: 5 pages, 4 figure

    Improvement by laser quenching of an "atom diode": a one-way barrier for ultra-cold atoms

    Full text link
    Different laser devices working as ``atom diodes'' or ``one-way barriers'' for ultra-cold atoms have been proposed recently. They transmit ground state level atoms coming from one side, say from the left, but reflect them when they come from the other side. We combine a previous model, consisting of the stimulated Raman adiabatic passage (STIRAP) from the ground to an excited state and a state-selective mirror potential, with a localized quenching laser which produces spontaneous decay back to the ground state. This avoids backwards motion, provides more control of the decay process and therefore a more compact and useful device.Comment: 6 page
    corecore