1,696 research outputs found
Photospheric properties and fundamental parameters of M dwarfs
M dwarfs are an important source of information when studying and probing the
lower end of the Hertzsprung-Russell (HR) diagram, down to the hydrogen-burning
limit. Being the most numerous and oldest stars in the galaxy, they carry
fundamental information on its chemical history. The presence of molecules in
their atmospheres, along with various condensed species, complicates our
understanding of their physical properties and thus makes the determination of
their fundamental stellar parameters more challenging and difficult. The aim of
this study is to perform a detailed spectroscopic analysis of the
high-resolution H-band spectra of M dwarfs in order to determine their
fundamental stellar parameters and to validate atmospheric models. The present
study will also help us to understand various processes, including dust
formation and depletion of metals onto dust grains in M dwarf atmospheres. The
high spectral resolution also provides a unique opportunity to constrain other
chemical and physical processes that occur in a cool atmosphere The
high-resolution APOGEE spectra of M dwarfs, covering the entire H-band, provide
a unique opportunity to measure their fundamental parameters. We have performed
a detailed spectral synthesis by comparing these high-resolution H-band spectra
to that of the most recent BT-settl model and have obtained fundamental
parameters such as effective temperature, surface gravity, and metallicity
(Teff, log g and [Fe/H]) respectively.Comment: 15 pages, 10 figures, accepted for publication in A&
Progress in Modeling Very Low Mass Stars, Brown Dwarfs, and Planetary Mass Objects
We review recent advancements in modeling the stellar to substellar
transition. The revised molecular opacities, solar oxygen abundances and cloud
models allow to reproduce the photometric and spectroscopic properties of this
transition to a degree never achieved before, but problems remain in the
important M-L transition characteristic of the effective temperature range of
characterizable exoplanets. We discuss of the validity of these classical
models. We also present new preliminary global Radiation HydroDynamical M
dwarfs simulations.Comment: Submitted to Mem. S. A. It. Supp
Recommended from our members
The SDSS-III APOGEE Radial Velocity Survey Of M Dwarfs. I. Description Of The Survey And Science Goals
We are carrying out a large ancillary program with the Sloan Digital Sky Survey, SDSS-III, using the fiber-fed multi-object near-infrared APOGEE spectrograph, to obtain high-resolution H-band spectra of more than 1200 M dwarfs. These observations will be used to measure spectroscopic rotational velocities, radial velocities, physical stellar parameters, and variability of the target stars. Here, we describe the target selection for this survey, as well as results from the first year of scientific observations based on spectra that will be publicly available in the SDSS-III DR 10 data release. As part of this paper we present radial velocities and rotational velocities of over 200 M dwarfs, with a v sin i precision of similar to 2 km s(-1) a measurement floor at v sin i = 4 km s(-1). This survey significantly increases the number of M dwarfs studied for rotational velocities and radial velocity variability (at similar to 100-200 m s(-1)), and will inform and advance the target selection for planned radial velocity and photometric searches for low-mass exoplanets around M dwarfs, such as the Habitable Zone Planet Finder, CARMENES, and TESS. Multiple epochs of radial velocity observations enable us to identify short period binaries, and adaptive optics imaging of a subset of stars enables the detection of possible stellar companions at larger separations. The high-resolution APOGEE spectra, covering the entire H band, provide the opportunity to measure physical stellar parameters such as effective temperatures and metallicities for many of these stars. At the culmination of this survey, we will have obtained multi-epoch spectra and radial velocities for over 1400 stars spanning the spectral range M0-L0, providing the largest set of near-infrared M dwarf spectra at high resolution, and more than doubling the number of known spectroscopic a sin i values for M dwarfs. Furthermore, by modeling telluric lines to correct for small instrumental radial velocity shifts, we hope to achieve a relative velocity precision floor of 50 m s(-1) for bright M dwarfs. With three or more epochs, this precision is adequate to detect substellar companions, including giant planets with short orbital periods, and flag them for higher-cadence followup. We present preliminary, and promising, results of this telluric modeling technique in this paper.Center for Exoplanets and Habitable WorldsPennsylvania State UniversityEberly College of SciencePennsylvania Space Grant ConsortiumNSF AST 1006676, AST 1126413National Science FoundationNational Aeronautics and Space Administration NNX-08AE38A, NNX13AB03GAlfred P. Sloan FoundationU.S. Department of Energy Oce of ScienceUniversity of ArizonaBrazilian Participation GroupBrookhaven National LaboratoryUniversity of CambridgeCarnegie Mellon UniversityUniversity of FloridaFrench Participation GroupGerman Participation GroupHarvard UniversityInstituto de Astrosica de CanariasMichigan State/Notre Dame/JINA Participation GroupJohns Hopkins UniversityLawrence Berkeley National LaboratoryMax Planck Institute for AstrophysicsMax Planck Institute for Extraterrestrial PhysicsNew Mexico State UniversityNew York UniversityOhio State UniversityUniversity of PortsmouthPrinceton UniversitySpanish Participation GroupUniversity of TokyoUniversity of UtahVanderbilt UniversityUniversity of VirginiaUniversity of WashingtonYale UniversityMcDonald Observator
The SDSS-III APOGEE Radial Velocity Survey of M dwarfs I: Description of Survey and Science Goals
We are carrying out a large ancillary program with the SDSS-III, using the
fiber-fed multi-object NIR APOGEE spectrograph, to obtain high-resolution
H-band spectra of more than 1200 M dwarfs. These observations are used to
measure spectroscopic rotational velocities, radial velocities, physical
stellar parameters, and variability of the target stars. Here, we describe the
target selection for this survey and results from the first year of scientific
observations based on spectra that is publicly available in the SDSS-III DR10
data release. As part of this paper we present RVs and vsini of over 200 M
dwarfs, with a vsini precision of ~2 km/s and a measurement floor at vsini = 4
km/s. This survey significantly increases the number of M dwarfs studied for
vsini and RV variability (at ~100-200 m/s), and will advance the target
selection for planned RV and photometric searches for low mass exoplanets
around M dwarfs, such as HPF, CARMENES, and TESS. Multiple epochs of radial
velocity observations enable us to identify short period binaries, and AO
imaging of a subset of stars enables the detection of possible stellar
companions at larger separations. The high-resolution H-band APOGEE spectra
provide the opportunity to measure physical stellar parameters such as
effective temperatures and metallicities for many of these stars. At the
culmination of this survey, we will have obtained multi-epoch spectra and RVs
for over 1400 stars spanning spectral types of M0-L0, providing the largest set
of NIR M dwarf spectra at high resolution, and more than doubling the number of
known spectroscopic vsini values for M dwarfs. Furthermore, by modeling
telluric lines to correct for small instrumental radial velocity shifts, we
hope to achieve a relative velocity precision floor of 50 m/s for bright M
dwarfs. We present preliminary results of this telluric modeling technique in
this paper.Comment: Submitted to Astronomical Journa
AGGRESSIVENESS AND THE INTENSITY OF PROVISIONING (ARTIFICIAL FEEDING) HANUMAN LANGURS AROUND JODHPUR (RAJASTHAN)
A behavioural study in free-ranging Hanuman langur (Semnopithecus entellus) around Jodhpur (west Rajasthan) was conducted during 2008-2009. Different patterns of agonistic behaviour and aggressiveness in different langur groups were observed depending on the intensity of provisioning during the study period. The effects of artificial feeding were examined between two troops having minimum and maximum provisioning by local peoples. Results are based on focal animal sampling and ad libitum sampling of 17 adult females in the group Kailana II (low provisioning) and Mandore troops of the langur population of Jodhpur. The behaviour of their aggressiveness was observed. Mandore troop having high provisioning and more interacting with human population was observed to be more aggressive and play more agnostic interaction within and between two troops compared to low provisioned troops. Highly provisioned troop had high-intensity aggression (68.9%) and aggressiveness. In Mandore total 85 incident were observed when troop members play a major role in aggressiveness. Studies on the nature of changing the aggressiveness with the intensity of provisioning and or human interaction are essential for a basic understanding of the behavioral strategies that individual displays when faced with changing food rapidly.
, 
Deep VLA Observations of the Cluster 1RXS J0603.3+4214 in the Frequency Range of 1–2 GHz
We report L-band VLA observations of 1RXS J0603.3+4214, a cluster that hosts
a bright radio relic, known as the Toothbrush, and an elongated giant radio
halo. These new observations allow us to study the surface brightness
distribution down to one arcsec resolution with very high sensitivity. Our
images provide an unprecedented detailed view of the Toothbrush, revealing
enigmatic filamentary structures. To study the spectral index distribution, we
complement our analysis with published LOFAR and GMRT observations. The bright
`brush' of the Toothbrush shows a prominent narrow ridge to its north with a
sharp outer edge. The spectral index at the ridge is in the range
. We suggest that the ridge is caused by projection
along the line of sight. With a simple toy model for the smallest region of the
ridge, we conclude that the magnetic field is below and varies
significantly across the shock front. Our model indicates that the actual Mach
number is higher than that obtained from the injection index and agrees well
with the one derived from the overall spectrum, namely . The radio halo shows an average spectral index of
and a slight gradient from north to south. The
southernmost part of the halo is steeper and possibly related to a shock front.
Excluding the southernmost part, the halo morphology agrees very well with the
X-ray morphology. A power-law correlation is found between the radio and X-ray
surface brightnessComment: 23 pages, 21 figures, accepted for publication in Ap
Trumpeting M Dwarfs with CONCH-SHELL: a Catalog of Nearby Cool Host-Stars for Habitable ExopLanets and Life
We present an all-sky catalog of 2970 nearby ( pc), bright
() M- or late K-type dwarf stars, 86% of which have been confirmed by
spectroscopy. This catalog will be useful for searches for Earth-size and
possibly Earth-like planets by future space-based transit missions and
ground-based infrared Doppler radial velocity surveys. Stars were selected from
the SUPERBLINK proper motion catalog according to absolute magnitudes, spectra,
or a combination of reduced proper motions and photometric colors. From our
spectra we determined gravity-sensitive indices, and identified and removed
0.2% of these as interloping hotter or evolved stars. Thirteen percent of the
stars exhibit H-alpha emission, an indication of stellar magnetic activity and
possible youth. The mean metallicity is [Fe/H] = -0.07 with a standard
deviation of 0.22 dex, similar to nearby solar-type stars. We determined
stellar effective temperatures by least-squares fitting of spectra to model
predictions calibrated by fits to stars with established bolometric
temperatures, and estimated radii, luminosities, and masses using empirical
relations. Six percent of stars with images from integral field spectra are
resolved doubles. We inferred the planet population around M dwarfs using
data and applied this to our catalog to predict detections by future
exoplanet surveys.Comment: Accepted to MNRAS 22 figures, 3 tables, 2 electronic tables.
Electronic tables are available as links on this pag
Primeval very low-mass stars and brown dwarfs. I. Six new L subdwarfs, classification and atmospheric properties
This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society. ©: 2016 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reservedWe have conducted a search for L subdwarf candidates within the photometric catalogues of the UKIRT Infrared Deep Sky Survey and Sloan Digital Sky Survey. Six of our candidates are confirmed as L subdwarfs spectroscopically at optical and/or near infrared wavelengths. We also present new optical spectra of three previously known L subdwarfs (WISEA J001450.17-083823.4, 2MASS J00412179+3547133, ULAS J124425.75+102439.3). We examined the spectral types and metallicity subclasses classification of known L subdwarfs. We summarised the spectroscopic properties of L subdwarfs with different spectral types and subclasses. We classify these new L subdwarfs by comparing their spectra to known L subdwarfs and L dwarf standards. We estimate temperatures and metallicities of 22 late type M and L subdwarfs by comparing their spectra to BT-Settl models. We find that L subdwarfs have temperatures between 1500 K and 2700 K, which are higher than similarly-typed L dwarfs by around 100-400 K depending on different subclasses and subtypes. We constrained the metallicity ranges of subclasses of M, L and T subdwarfs. We also discussed the spectral type and absolute magnitude relationships for L and T subdwarfs.Peer reviewedFinal Published versio
Radio relics radio emission from ltishock scenario
Radio relics are giant (Mpc) synchrotron sources that are believed to be produced by the (re)acceleration of cosmic ray electrons (CRe) by shocks in the intracluster medium. In this numerical study, we focus on the possibility that some radio relics may arise when electrons undergo diffusive shock acceleration at ltishocks in the outskirts of merging galaxy clusters. This ltishock (MS) scenario appears viable to produce CRe that emit visible synchrotron emission. We show that electrons that have been shocked ltiple times develop an energy spectrum that significantly differs from the power-law spectrum expected in the case of a single shock scenario. As a consequence, the radio emission generated by CRe that shocked ltiple times is higher than the emission produced by CRe that are shocked only once. In the case explored in this paper, the radio emission produced in the two scenarios differ by one order of magnitude. In particular in the MS scenario, the silated relic follows a KGJP spectral shape, consistent with observation. Furtheore, the produced radio emission is large enough to be detectable with current radio telescopes (e.g. LOFAR, JVLA)
Magnetic Field Amplification in Galaxy Clusters and its Simulation
We review the present theoretical and numerical understanding of magnetic
field amplification in cosmic large-scale structure, on length scales of galaxy
clusters and beyond. Structure formation drives compression and turbulence,
which amplify tiny magnetic seed fields to the microGauss values that are
observed in the intracluster medium. This process is intimately connected to
the properties of turbulence and the microphysics of the intra-cluster medium.
Additional roles are played by merger induced shocks that sweep through the
intra-cluster medium and motions induced by sloshing cool cores. The accurate
simulation of magnetic field amplification in clusters still poses a serious
challenge for simulations of cosmological structure formation. We review the
current literature on cosmological simulations that include magnetic fields and
outline theoretical as well as numerical challenges.Comment: 60 pages, 19 Figure
- …
