52 research outputs found
Effects of steroids and angiotensin converting enzyme inhibition on circumferential strain in boys with Duchenne muscular dystrophy: a cross-sectional and longitudinal study utilizing cardiovascular magnetic resonance
<p>Abstract</p> <p>Background</p> <p>Steroid use has prolonged ambulation in Duchenne muscular dystrophy (DMD) and combined with advances in respiratory care overall management has improved such that cardiac manifestations have become the major cause of death. Unfortunately, there is no consensus for DMD-associated cardiac disease management. Our purpose was to assess effects of steroid use alone or in combination with angiotensin converting enzyme inhibitors (ACEI) or angiotension receptor blocker (ARB) on cardiovascular magnetic resonance (CMR) derived circumferential strain (ε<sub>cc</sub>).</p> <p>Methods</p> <p>We used CMR to assess effects of corticosteroids alone (Group A) or in combination with ACEI or ARB (Group B) on heart rate (HR), left ventricular ejection fraction (LVEF), mass (LVM), end diastolic volume (LVEDV) and circumferential strain (ε<sub>cc</sub>) in a cohort of 171 DMD patients >5 years of age. Treatment decisions were made independently by physicians at both our institution and referral centers and not based on CMR results.</p> <p>Results</p> <p>Patients in Group A (114 studies) were younger than those in Group B (92 studies)(10 ± 2.4 vs. 12.4 ± 3.2 years, p < 0.0001), but HR, LVEF, LVEDV and LVM were not different. Although ε<sub>cc </sub>magnitude was lower in Group B than Group A (-13.8 ± 1.9 vs. -12.8 ± 2.0, p = 0.0004), age correction using covariance analysis eliminated this effect. In a subset of patients who underwent serial CMR exams with an inter-study time of ~15 months, ε<sub>cc </sub>worsened regardless of treatment group.</p> <p>Conclusions</p> <p>These results support the need for prospective clinical trials to identify more effective treatment regimens for DMD associated cardiac disease.</p
Brain natriuretic peptide is not predictive of dilated cardiomyopathy in Becker and Duchenne muscular dystrophy patients and carriers
BACKGROUND: Cardiomyopathy is reported in Duchenne and Becker muscle dystrophy patients and female carriers. Brain Natriuretic peptide (BNP) is a hormone produced mainly by ventricular cardiomyocytes and its production is up regulated in reaction to increased wall stretching. N-terminal-proBNP (NT-proBNP) has been shown to be a robust laboratory parameter to diagnose and monitor cardiac failure, and it may be helpful to screen for asymptomatic left ventricular dysfunction. Therefore we tested whether NT-proBNP can distinguish patients with Duchenne or Becker muscular dystrophy patients and carriers of a dystrophin mutation with a dilated cardiomyopathy from those without. METHODS: In a cohort of Duchenne and Becker muscle dystrophy patients (n = 143) and carriers (n = 219) NT-proBNP was measured, and echocardiography was performed to diagnose dilated cardiomyopathy (DCM). RESULTS: In total sixty-one patients (17%) fulfilled the criteria for DCM, whereas 283 patients (78%) had an elevated NT-pro BNP. The sensitivity of NT-proBNP for DCM in patients or carriers was 85%, the specificity 23%, area under the ROC-curve = 0.56. In the specified subgroups there was also no association. CONCLUSION: Measurement of NT-pro BNP in patients suffering from Duchenne or Becker muscular dystrophy and carriers does not distinguish between those with and without dilated cardiomyopathy
Estudo das alterações oxidativas, da capacidade antioxidante total e do óxido nítrico, em ratos submetidos à isquemia e reperfusão de membros posteriores
Therapeutic Potential of HDL in Cardioprotection and Tissue Repair
Epidemiological studies support a strong association between high-density lipoprotein (HDL) cholesterol levels and heart failure incidence. Experimental evidence from different angles supports the view that low HDL is unlikely an innocent bystander in the development of heart failure. HDL exerts direct cardioprotective effects, which are mediated via its interactions with the myocardium and more specifically with cardiomyocytes. HDL may improve cardiac function in several ways. Firstly, HDL may protect the heart against ischaemia/reperfusion injury resulting in a reduction of infarct size and thus in myocardial salvage. Secondly, HDL can improve cardiac function in the absence of ischaemic heart disease as illustrated by beneficial effects conferred by these lipoproteins in diabetic cardiomyopathy. Thirdly, HDL may improve cardiac function by reducing infarct expansion and by attenuating ventricular remodelling post-myocardial infarction. These different mechanisms are substantiated by in vitro, ex vivo, and in vivo intervention studies that applied treatment with native HDL, treatment with reconstituted HDL, or human apo A-I gene transfer. The effect of human apo A-I gene transfer on infarct expansion and ventricular remodelling post-myocardial infarction illustrates the beneficial effects of HDL on tissue repair. The role of HDL in tissue repair is further underpinned by the potent effects of these lipoproteins on endothelial progenitor cell number, function, and incorporation, which may in particular be relevant under conditions of high endothelial cell turnover. Furthermore, topical HDL therapy enhances cutaneous wound healing in different models. In conclusion, the development of HDL-targeted interventions in these strategically chosen therapeutic areas is supported by a strong clinical rationale and significant preclinical data.status: publishe
Prévention des troubles musculosquelettiques au sein d’une entreprise industrielle de transformation de la viande
- …
