13,420 research outputs found
Morphology Effectively Controls Singlet-Triplet Exciton Relaxation and Charge Transport in Organic Semiconductors
We present a comparative study of ultrafast photo-conversion dynamics in
tetracene (Tc) and pentacene (Pc) single crystals and Pc films using optical
pump-probe spectroscopy. Photo-induced absorption in Tc and Pc crystals is
activated and temperature-independent respectively, demonstrating dominant
singlet-triplet exciton fission. In Pc films (as well as C-doped films)
this decay channel is suppressed by electron trapping. These results
demonstrate the central role of crystallinity and purity in photogeneration
processes and will constrain the design of future photovoltaic devices.Comment:
Voltage dip generator for testing wind turbines connected to electrical networks
This paper describes a new voltage dip generator that allows the shape of the time profile of the voltage generated to be configured. The use of this device as a tool to test the fault ride-through capability of wind turbines connected to the electricity grid can provide some remarkable benefits: First, this system offers the possibility of adapting the main features of the time–voltage profile generated (dip depth, dip duration, the ramp slope during the recovery process after clearing fault, etc.) to the specific requirements set forth by the grid operation codes, in accordance with different network electrical systems standards. Second, another remarkable ability of this system is to provide sinusoidal voltage and current wave forms during the overall testing process without the presence of harmonic components. This is made possible by the absence of electronic converters. Finally, the paper includes results and a discussion on the experimental data obtained with the use of a reduced size laboratory prototype that was constructed to validate the operating features of this new device
Near-Infrared Polarimetric Adaptive Optics Observations of NGC 1068: A torus created by a hydromagnetic outflow wind
We present J' and K' imaging linear polarimetric adaptive optics observations
of NGC 1068 using MMT-Pol on the 6.5-m MMT. These observations allow us to
study the torus from a magnetohydrodynamical (MHD) framework. In a 0.5" (30 pc)
aperture at K', we find that polarisation arising from the passage of radiation
from the inner edge of the torus through magnetically aligned dust grains in
the clumps is the dominant polarisation mechanism, with an intrinsic
polarisation of 7.0%2.2%. This result yields a torus magnetic field
strength in the range of 482 mG through paramagnetic alignment, and
139 mG through the Chandrasekhar-Fermi method. The measured
position angle (P.A.) of polarisation at K is found to be similar to the
P.A. of the obscuring dusty component at few parsec scales using infrared
interferometric techniques. We show that the constant component of the magnetic
field is responsible for the alignment of the dust grains, and aligned with the
torus axis onto the plane of the sky. Adopting this magnetic field
configuration and the physical conditions of the clumps in the MHD outflow wind
model, we estimate a mass outflow rate 0.17 M yr at 0.4
pc from the central engine for those clumps showing near-infrared dichroism.
The models used were able to create the torus in a timescale of 10
yr with a rotational velocity of 1228 km s at 0.4 pc. We conclude
that the evolution, morphology and kinematics of the torus in NGC 1068 can be
explained within a MHD framework.Comment: 14 pages, 4 figures, Accepted by MNRA
A theoretical analysis of Ballistic Electron Emission Microscopy: k-space distributions and spectroscopy
We analyze BEEM experiments. At low temperatures and low voltages, near the
threshold value of the Schottky barrier, the BEEM current is dominated by the
elastic component. Elastic scattering by the lattice results in the formation
of focused beams and narrow lines in real space. To obtain the current injected
in the semiconductor, we compute the current distribution in reciprocal space
and, assuming energy and conservation. Our results show an
important focalization of the injected electron beam and explain the similarity
between BEEM currents for Au/Si(111) and Au/Si(100).Comment: 17 pages, 5 figures (postscript), Latex, APS,
http://www.icmm.csic.es/Pandres/pedro.htm. Appl. Surf. Sci. (in press
Soft spin waves in the low temperature thermodynamics of Pr_{0.7}Ca_{0.3}MnO_{3}
We present a detailed magnetothermal study of Pr(0.7)Ca(0.3)MnO(3), a
perovskite manganite in which an insulator-metal transition can be driven by
magnetic field, but also by pressure, visible light, x-rays, or high currents.
We find that the field-induced transition is associated with an enormous
release of energy which accounts for its strong irreversibility. In the
ferromagnetic metallic state, specific heat and magnetization measurements
indicate a much smaller spin wave stiffness than that seen in any other
manganite, which we attribute to spin waves among the ferromagnetically ordered
Pr moments. The coupling between the Pr and Mn spins may also provide a basis
for understanding the low temperature phase diagram of this most unusual
manganite.Comment: 10 pages, LATEX, 5 PDF figures, corrected typo
Co-operative Kondo Effect in the two-channel Kondo Lattice
We discuss the possibility of a co-operative Kondo effect driven by channel
interference in a Kondo lattice where local moments are coupled to a single
Fermi sea via two orthogonal scattering channels. In this situation, the
channel quantum number is not conserved. We argue that the absence of channel
conservation causes the Kondo effect in the two channels to constructively
interfere, giving rise to a superconducting condensate of composite pairs,
formed between the local moments and the conduction electrons. Our arguments
are based on the observation that a heavy Fermi surface gives rise to zero
modes for Kondo singlets to fluctuate between screening channels of different
symmetry, producing a divergent composite pair susceptibility. Secondary
screening channels couple to these divergent fluctuations, promoting an
instability into a state with long-range composite order. We present detailed a
detailed mean-field theory for this superconducting phase, and discuss the
possible implications for heavy fermion physics.Comment: 23 double column pages. 9 fig
Impact of Charge Ordering on Magnetic Correlations in Perovskite (Bi,Ca)MnO_3
Single crystalline (Bi,Ca)MnO3 (74< %Ca <82) were studied with neutron
scattering, electron diffraction and bulk magnetic measurement. We discovered
dynamic ferromagnetic spin correlations at high temperatures, which are
replaced by antiferromagnetic spin fluctuations at a concomitant charge
ordering and structural transition. Our results indicate that thermal-activated
hopping of the Jahn-Teller active e_g electrons in these insulating materials,
nevertheless, induce ferromagnetic interaction through double-exchange
mechanism. It is the ordering of these charges competing with the
double-exchange ferromagnetic metallic state.Comment: 11 pages, 3 figures, Revte
Bonding, Moment Formation, and Magnetic Interactions in Ca14MnBi11 and Ba14MnBi11
The ``14-1-11'' phase compounds based on magnetic Mn ions and typified by
Ca14MnBi11 and Ba14MnBi11 show unusual magnetic behavior, but the large number
(104) of atoms in the primitive cell has precluded any previous full electronic
structure study. Using an efficient, local orbital based method within the
local spin density approximation to study the electronic structure, we find a
gap between a bonding valence band complex and an antibonding conduction band
continuum. The bonding bands lack one electron per formula unit of being
filled, making them low carrier density p-type metals. The hole resides in the
MnBi4 tetrahedral unit and partially compensates the high spin d^5 Mn moment,
leaving a net spin near 4 \mu_B that is consistent with experiment. These
manganites are composed of two disjoint but interpenetrating `jungle gym'
networks of spin 4/2 MnBi4^{9-} units with ferromagnetic interactions within
the same network, and weaker couplings between the networks whose sign and
magnitude is sensitive to materials parameters. Ca14MnBi11 is calculated to be
ferromagnetic as observed, while for Ba14MnBi11 (which is antiferromagnetic)
the ferro- and antiferromagnetic states are calculated to be essentially
degenerate. The band structure of the ferromagnetic states is very close to
half metallic.Comment: 17 pages, containing 10 postscript figures and 5 tables. Two
additional figures (Fig.8 and 11 of the paper) are provided in JPG format in
separate files. Submitted to Phys. Rev. B on September 20th 200
Pedestrian Approach to the Two-Channel Kondo Model
We reformulate the two-channel Kondo model to explicitly remove the
unscattered charge degrees of freedom. This procedure permits us to move the
non-Fermi liquid fixed point to infinite coupling where we can apply a
perturbative strong-coupling expansion. The fixed point Hamiltonian involves a
three-body Majorana zero mode whose scattering effects give rise to marginal
self-energies. The compactified model is the N=3 member of a family of "O(N)"
Kondo models that can be solved by semiclassical methods in the large
limit. For odd , {\em fermionic} "Kink" fluctuations about the
mean-field theory generate a fermionic -body bound-state which
asymptotically decouples at low energies. For N=3, our semi-classical methods
fully recover the non-Fermi liquid physics of the original two channel model.
Using the same methods, we find that the corresponding O(3) Kondo lattice model
develops a spin-gap and a gapless band of coherently propagating three-body
bound-states. Its strong-coupling limit offers a rather interesting realization
of marginal Fermi liquid behavior.Comment: 17 pages, Revtex 3.0. Replaced with fully compiled postscript file
Spin Dynamics of the Magnetoresistive Pyrochlore Tl_2Mn_2O_7
Neutron scattering has been used to study the magnetic order and spin
dynamics of the colossal magnetoresistive pyrochlore Tl_2Mn_2O_7. On cooling
from the paramagnetic state, magnetic correlations develop and appear to
diverge at T_C (123 K). In the ferromagnetic phase well defined spin waves are
observed, with a gapless ( meV) dispersion relation E=Dq^{2} as
expected for an ideal isotropic ferromagnet. As T approaches T_C from low T,
the spin waves renormalize, but no significant central diffusive component to
the fluctuation spectrum is observed in stark contrast to the
La(Ca,Ba,Sr)MnO system. These results argue strongly that the
mechanism responsible for the magnetoresistive effect has a different origin in
these two classes of materials.Comment: 4 pages (RevTex), 4 figures (encapsulated postscript), to be
published in Phys. Rev. Let
- …
