438 research outputs found

    Contradiction and complacency shape attitudes towards the toll of roads on wildlife

    Full text link
    © 2016 by the authors; licensee MDPI, Basel, Switzerland. Most people in the world now live in cities. Urbanisation simultaneously isolates people from nature and contributes to biodiversity decline. As cities expand, suburban development and the road infrastructure to support them widens their impact on wildlife. Even so, urban communities, especially those on the peri-urban fringe, endeavour to support biodiversity through wildlife friendly gardens, green spaces and corridors, and conservation estates. On one hand, many who live on city fringes do so because they enjoy proximity to nature, however, the ever increasing intrusion of roads leads to conflict with wildlife. Trauma (usually fatal) to wildlife and (usually emotional and financial) to people ensues. Exposure to this trauma, therefore, should inform attitudes towards wildlife vehicle collisions (WVC) and be linked to willingness to reduce risk of further WVC. While there is good anecdotal evidence for this response, competing priorities and better understanding of the likelihood of human injury or fatalities, as opposed to wildlife fatalities, may confound this trend. In this paper we sought to explore this relationship with a quantitative study of driver behaviour and attitudes to WVC from a cohort of residents and visitors who drive through a peri-urban reserve (Royal National Park) on the outskirts of Sydney, Australia. We distributed a self-reporting questionnaire and received responses from 105 local residents and 51 visitors to small townships accessed by roads through the national park. We sought the respondents’ exposure to WVC, their evasive actions in an impending WVC, their attitudes to wildlife fatalities, their strategies to reduce the risk of WVC, and their willingness to adopt new ameliorative measures. The results were partitioned by driver demographics and residency. Residents were generally well informed about mitigation strategies but exposure led to a decrease in viewing WVC as very serious. In addition, despite most respondents stating they routinely drive slower when collision risk is high (at dusk and dawn), our assessment of driving trends via traffic speeds suggested this sentiment was not generally adhered to. Thus we unveil some of the complexities in tackling driver’s willingness to act on reducing risk of WVC, particularly when risk of human trauma is low

    Predator scent induces differing responses in two sympatric macropodids

    Full text link
    When prey species encounter the scent of a predator they must make a decision on how to respond. This may be either to ignore, flee, hide or alarm call. While many species are able to derive detailed information from the chemical cues associated with predator scent, for some the decision to respond is often made without being able to identify the actual location and intentions of the predator. Depending on the sociality and ecology of the species, it may pay to flee or to engage in predator inspection where knowledge is impure. We tested for this in two sympatric marsupial macropodids, the parma wallaby (Macropus parma) and the red-necked pademelon (Thylogale thetis), as little is known of how these species detect and respond to olfactory cues of predation risk. We observed that, when presented with a synthetic predator scent mimicking dog urine, the social forager, T. thetis, tended to spend more time close to the predator odour, while the solitary forager, M. parma, exhibited an aversive response. The results suggest that social and ecological constraints on the sensory modalities used in predator detection may influence how macropodids respond to olfactory predator cues. © CSIRO 2005

    Fine-grained climate data alters the interpretation of a trait-based cline

    Get PDF
    Investigating responses to climate often rely on macroclimatic models. This is problematic because of the potential to miss or wrongly attribute relationships. Here we compare the explanatory power of macroclimatic models and near-surface topoclimatic models. Body-size measurements of the ant species, Iridomyrmex purpureus, were collected from separate colonies spanning a range of climatic conditions in a large region (∼75,000 km2) of Australia. Regional regression was used to derive two topoclimatic variables, while ANUCLIM was used to derive macroclimatic variables. Relationships were tested using linear mixed-effect models with Akaike information criterion used as an indication of the relative goodness of fit for each model. Significant trends for both topoclimatic variables with body size were detected but only one of the three macroclimatic variables showed a significant trend. Although the significant macroclimatic variable was correlated with one of the topoclimatic variables, the topoclimatic variable had greater explanatory power. Few studies have considered climatic data accuracy or the effects of inaccurately quantified climatic data on ecological theory. This cannot continue to be ignored. As we show in this study, there is potential for important trends to go undetected and interpretation of results to be completely different. Copyright © 2013 Gollan et al

    Model-based control of observer bias for the analysis of presence-only data in ecology

    Get PDF
    Presence-only data, where information is available concerning species presence but not species absence, are subject to bias due to observers being more likely to visit and record sightings at some locations than others (hereafter "observer bias"). In this paper, we describe and evaluate a model-based approach to accounting for observer bias directly - by modelling presence locations as a function of known observer bias variables (such as accessibility variables) in addition to environmental variables, then conditioning on a common level of bias to make predictions of species occurrence free of such observer bias. We implement this idea using point process models with a LASSO penalty, a new presence-only method related to maximum entropy modelling, that implicitly addresses the "pseudo-absence problem" of where to locate pseudo-absences (and how many). The proposed method of bias-correction is evaluated using systematically collected presence/absence data for 62 plant species endemic to the Blue Mountains near Sydney, Australia. It is shown that modelling and controlling for observer bias significantly improves the accuracy of predictions made using presence-only data, and usually improves predictions as compared to pseudo-absence or "inventory" methods of bias correction based on absences from non-target species. Future research will consider the potential for improving the proposed bias-correction approach by estimating the observer bias simultaneously across multiple species. © 2013 Warton et al

    On-Chip Cavity Optomechanical Coupling

    Get PDF
    On-chip cavity optomechanics, in which strong co-localization of light and mechanical motion is engineered, relies on efficient coupling of light both into and out of the on-chip optical resonator. Here we detail our particular style of tapered and dimpled optical fibers, pioneered by the Painter group at Caltech, which are a versatile and reliable solution to efficient on-chip coupling. First, a brief overview of tapered, single mode fibers is presented, in which the single mode cutoff diameter is highlighted. The apparatus used to create a dimpled tapered fiber is then described, followed by a comprehensive account of the procedure by which a dimpled tapered fiber is produced and mounted in our system. The custom-built optical access vacuum chambers in which our on-chip optomechanical measurements are performed are then discussed. Finally, the process by which our optomechanical devices are fabricated and the method by which we explore their optical and mechanical properties is explained. It is our expectation that this manuscript will enable the novice to develop advanced optomechanical experiments.Comment: 31 pages, 9 figure
    corecore