579 research outputs found
Paramagnetic-diamagnetic interplay in quantum dots for non-zero temperatures
In the usual Fock-and Darwin-formalism with parabolic potential characterized
by the confining energy \eps_o := \hbar\omega_o= 3.37 meV, but including
explicitly also the Zeeman coupling between spin and magnetic field, we study
the combined orbital and spin magnetic properties of quantum dots in a
two-dimensional electron gas with parameters for GaAs, for N =1 and N >> 1
electrons on the dot.
For N=1 the magnetization M(T,B) consists of a paramagnetic spin contribution
and a diamagnetic orbital contribution, which dominate in a non-trivial way at
low temperature and fields rsp. high temperature and fields.
For N >> 1, where orbital and spin effects are intrinsically coupled in a
subtle way and cannot be separated, we find in a simplified Hartree
approximation that at N=m^2, i.e. at a half-filled last shell, M(T,B,N) is
parallel (antiparallel) to the magnetic field, if temperatures and fields are
low enough (high enough), whereas for N\ne m^2 the magnetization oscillates
with B and N as a T-dependent periodic function of the variable
x:=\sqrt{N}eB/(2m^*c\omega_o), with T-independent period \Delta x =1 (where m^*
:= 0.067 m_o is the small effective mass of GaAs, while m_o is the electron
mass). Correspondingly, by an adiabatic demagnetization process, which should
only be fast enough with respect to the slow transient time of the magnetic
properties of the dot, the temperature of the dot diminishes rsp. increases
with decreasing magnetic field, and in some cases we obtain quite pronounced
effects.Comment: LaTeX, 28 pages; including three .eps-figures; final version accepted
by J. Phys. CM, with minimal changes w.r.to v
Superconductor coupled to two Luttinger liquids as an entangler for electron spins
We consider an s-wave superconductor (SC) which is tunnel-coupled to two
spatially separated Luttinger liquid (LL) leads. We demonstrate that such a
setup acts as an entangler, i.e. it creates spin-singlets of two electrons
which are spatially separated, thereby providing a source of electronic
Einstein-Podolsky-Rosen pairs. We show that in the presence of a bias voltage,
which is smaller than the energy gap in the SC, a stationary current of
spin-entangled electrons can flow from the SC to the LL leads due to Andreev
tunneling events. We discuss two competing transport channels for Cooper pairs
to tunnel from the SC into the LL leads. On the one hand, the coherent
tunneling of two electrons into the same LL lead is shown to be suppressed by
strong LL correlations compared to single-electron tunneling into a LL. On the
other hand, the tunneling of two spin-entangled electrons into different leads
is suppressed by the initial spatial separation of the two electrons coming
from the same Cooper pair. We show that the latter suppression depends
crucially on the effective dimensionality of the SC. We identify a regime of
experimental interest in which the separation of two spin-entangled electrons
is favored. We determine the decay of the singlet state of two electrons
injected into different leads caused by the LL correlations. Although the
electron is not a proper quasiparticle of the LL, the spin information can
still be transported via the spin density fluctuations produced by the injected
spin-entangled electrons.Comment: 15 pages, 2 figure
Andreev-Tunneling, Coulomb Blockade, and Resonant Transport of Non-Local Spin-Entangled Electrons
We propose and analyze a spin-entangler for electrons based on an s-wave
superconductor coupled to two quantum dots each of which is tunnel-coupled to
normal Fermi leads. We show that in the presence of a voltage bias and in the
Coulomb blockade regime two correlated electrons provided by the Andreev
process can coherently tunnel from the superconductor via different dots into
different leads. The spin-singlet coming from the Cooper pair remains preserved
in this process, and the setup provides a source of mobile and nonlocal
spin-entangled electrons. The transport current is calculated and shown to be
dominated by a two-particle Breit-Wigner resonance which allows the injection
of two spin-entangled electrons into different leads at exactly the same
orbital energy, which is a crucial requirement for the detection of spin
entanglement via noise measurements. The coherent tunneling of both electrons
into the same lead is suppressed by the on-site Coulomb repulsion and/or the
superconducting gap, while the tunneling into different leads is suppressed
through the initial separation of the tunneling electrons. In the regime of
interest the particle-hole excitations of the leads are shown to be negligible.
The Aharonov-Bohm oscillations in the current are shown to contain single- and
two-electron periods with amplitudes that both vanish with increasing Coulomb
repulsion albeit differently fast.Comment: 11 double-column pages, 2 figures, REVTeX, minor revision
Enhanced quasiparticle dynamics of quantum well states: the giant Rashba system BiTeI and topological insulators
In the giant Rashba semiconductor BiTeI electronic surface scattering with
Lorentzian linewidth is observed that shows a strong dependence on surface
termination and surface potential shifts. A comparison with the topological
insulator Bi2Se3 evidences that surface confined quantum well states are the
origin of these processes. We notice an enhanced quasiparticle dynamics of
these states with scattering rates that are comparable to polaronic systems in
the collision dominated regime. The Eg symmetry of the Lorentzian scattering
contribution is different from the chiral (RL) symmetry of the corresponding
signal in the topological insulator although both systems have spin-split
surface states.Comment: 6 pages, 5 figure
Fidelity and level correlations in the transition from regularity to chaos
Mean fidelity amplitude and parametric energy--energy correlations are
calculated exactly for a regular system, which is subject to a chaotic random
perturbation. It turns out that in this particular case under the average both
quantities are identical. The result is compared with the susceptibility of
chaotic systems against random perturbations. Regular systems are more
susceptible against random perturbations than chaotic ones.Comment: 7 pages, 1 figur
Control of spin in quantum dots with non-Fermi liquid correlations
Spin effects in the transport properties of a quantum dot with spin-charge
separation are investigated. It is found that the non-linear transport spectra
are dominated by spin dynamics. Strong spin polarization effects are observed
in a magnetic field. They can be controlled by varying gate and bias voltages.
Complete polarization is stable against interactions. When polarization is not
complete, it is power-law enhanced by non-Fermi liquid effects.Comment: 4 pages, 4 figure
Quantum Dot as Spin Filter and Spin Memory
We consider a quantum dot in the Coulomb blockade regime weakly coupled to
current leads and show that in the presence of a magnetic field the dot acts as
an efficient spin-filter (at the single-spin level) which produces a
spin-polarized current. Conversely, if the leads are fully spin-polarized the
up or down state of the spin on the dot results in a large sequential or small
cotunneling current, and thus, together with ESR techniques, the setup can be
operated as a single-spin memory.Comment: 4 pages, 3 figures, REVTe
Nuclear spin relaxation probed by a single quantum dot
We present measurements on nuclear spin relaxation probed by a single quantum
dot in a high-mobility electron gas. Current passing through the dot leads to a
spin transfer from the electronic to the nuclear spin system. Applying electron
spin resonance the transfer mechanism can directly be tuned. Additionally, the
dependence of nuclear spin relaxation on the dot gate voltage is observed. We
find electron-nuclear relaxation times of the order of 10 minutes
Reversing non-local transport through a superconductor by electromagnetic excitations
Superconductors connected to normal metallic electrodes at the nanoscale
provide a potential source of non-locally entangled electron pairs. Such states
would arise from Cooper pairs splitting into two electrons with opposite spins
tunnelling into different leads. In an actual system the detection of these
processes is hindered by the elastic transmission of individual electrons
between the leads, yielding an opposite contribution to the non-local
conductance. Here we show that electromagnetic excitations on the
superconductor can play an important role in altering the balance between these
two processes, leading to a dominance of one upon the other depending on the
spatial symmetry of these excitations. These findings allow to understand some
intriguing recent experimental results and open the possibility to control
non-local transport through a superconductor by an appropriate design of the
experimental geometry.Comment: 6 pages, 3 figure
- …
