1,130 research outputs found
Ductile fracture simulations using a multi-surface coupled damage-plasticity model
In this paper, an isotropic porous metal plasticity model accounting for both void growth by diffuse plastic deformation and void ‘coalescence’ by localization of plastic flow in the inter-void ligaments is presented. Predictions for the effective stress-strain response, evolution of damage and the strains to failure are obtained by integrating the model numerically under triaxial proportional loading conditions. The model predictions are compared with results from micromechanical finite element simulations of the average response of voided unit cells under similar loading conditions. It is shown that the model predictions for the failure strains as a function of the loading path are in good qualitative agreement with the results of the cell model simulations
A biophysical model of decision making in an antisaccade task through variable climbing activity
We present a biophysical model of saccade initiation based on
competitive integration of planned and reactive cortical saccade decision signals
in the intermediate layer of the superior colliculus. In the model, the variable
slopes of the climbing activities of the input cortical decision signals are
produced from variability in the conductances of Na+, K+, Ca2+ activated K+,
NMDA and GABA currents. These cortical decision signals are integrated in
the activities of buildup neurons in the intermediate layer of the superior
colliculus, whose activities grow nonlinearly towards a preset criterion level.
When the level is crossed, a movement is initiated. The resultant model
reproduces the unimodal distributions of saccade reaction times (SRTs) for
correct antisaccades and erroneous prosaccades as well as the variability of
SRTs (ranging from 80ms to 600ms) and the overall 25% of erroneous
prosaccade responses in a large sample of 2006 young men performing an
antisaccade task
Noise-robust method for image segmentation
Segmentation of noisy images is one of the most challenging problems in image analysis and any improvement of segmentation methods can highly influence the performance of many image processing applications. In automated image segmentation, the fuzzy c-means (FCM) clustering has been widely used because of its ability to model uncertainty within the data, applicability to multi-modal data and fairly robust behaviour. However, the standard FCM algorithm does not consider any information about the spatial linage context and is highly sensitive to noise and other imaging artefacts. Considering above mentioned problems, we developed a new FCM-based approach for the noise-robust fuzzy clustering and we present it in this paper. In this new iterative algorithm we incorporated both spatial and feature space information into the similarity measure and the membership function. We considered that spatial information depends on the relative location and features of the neighbouring pixels. The performance of the proposed algorithm is tested on synthetic image with different noise levels and real images. Experimental quantitative and qualitative segmentation results show that our method efficiently preserves the homogeneity of the regions and is more robust to noise than other FCM-based methods
Self-managing postoperative pain with the use of a novel, interactive device: a proof of concept study
Background: Pain is commonly experienced following surgical procedures. Suboptimal management is multifactorial. Objectives. The primary objective was to assess whether patients used a device (Navimed) to self-report pain over and above a normal baseline of observations. Secondary outcome measures included comparison of pain scores and patient use of and feedback on the device. Methods: In a prospective randomized controlled trial, elective gynaecological surgery patients received standard postoperative pain care or standard care plus the Navimed, which allowed them to self-report pain and offered interactive self-help options. Results: 52 female patients, 26 in each of device and standard groups, did not differ in the frequency of nurse-documented pain scores or mean pain scores provided to nurses. The device group additionally reported pain on the device (means 18.50 versus 11.90 pain ratings per day, t(32) = 2.75, p < 0.001) that was significantly worse than reported to nurses but retrospectively rated significantly less anxiety. 80% of patients found the device useful. Discussion and Conclusion: This study demonstrates that patients used the Navimed to report pain and to help manage it. Further work is required to investigate the difference in pain scores reported and to develop more sophisticated software
Under pressure: Response urgency modulates striatal and insula activity during decision-making under risk
When deciding whether to bet in situations that involve potential monetary loss or gain (mixed gambles), a subjective sense of pressure can influence the evaluation of the expected utility associated with each choice option. Here, we explored how gambling decisions, their psychophysiological and neural counterparts are modulated by an induced sense of urgency to respond. Urgency influenced decision times and evoked heart rate responses, interacting with the expected value of each gamble. Using functional MRI, we observed that this interaction was associated with changes in the activity of the striatum, a critical region for both reward and choice selection, and within the insula, a region implicated as the substrate of affective feelings arising from interoceptive signals which influence motivational behavior. Our findings bridge current psychophysiological and neurobiological models of value representation and action-programming, identifying the striatum and insular cortex as the key substrates of decision-making under risk and urgency
Paradoxical roles of antioxidant enzymes:Basic mechanisms and health implications
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are generated from aerobic metabolism, as a result of accidental electron leakage as well as regulated enzymatic processes. Because ROS/RNS can induce oxidative injury and act in redox signaling, enzymes metabolizing them will inherently promote either health or disease, depending on the physiological context. It is thus misleading to consider conventionally called antioxidant enzymes to be largely, if not exclusively, health protective. Because such a notion is nonetheless common, we herein attempt to rationalize why this simplistic view should be avoided. First we give an updated summary of physiological phenotypes triggered in mouse models of overexpression or knockout of major antioxidant enzymes. Subsequently, we focus on a series of striking cases that demonstrate “paradoxical” outcomes, i.e., increased fitness upon deletion of antioxidant enzymes or disease triggered by their overexpression. We elaborate mechanisms by which these phenotypes are mediated via chemical, biological, and metabolic interactions of the antioxidant enzymes with their substrates, downstream events, and cellular context. Furthermore, we propose that novel treatments of antioxidant enzyme-related human diseases may be enabled by deliberate targeting of dual roles of the pertaining enzymes. We also discuss the potential of “antioxidant” nutrients and phytochemicals, via regulating the expression or function of antioxidant enzymes, in preventing, treating, or aggravating chronic diseases. We conclude that “paradoxical” roles of antioxidant enzymes in physiology, health, and disease derive from sophisticated molecular mechanisms of redox biology and metabolic homeostasis. Simply viewing antioxidant enzymes as always being beneficial is not only conceptually misleading but also clinically hazardous if such notions underpin medical treatment protocols based on modulation of redox pathways
Ductile fracture simulations using a multi-surface coupled damage-plasticity model
In this paper, an isotropic porous metal plasticity model accounting for both void growth by diffuse plastic deformation and void ‘coalescence’ by localization of plastic flow in the inter-void ligaments is presented. Predictions for the effective stress-strain response, evolution of damage and the strains to failure are obtained by integrating the model numerically under triaxial proportional loading conditions. The model predictions are compared with results from micromechanical finite element simulations of the average response of voided unit cells under similar loading conditions. It is shown that the model predictions for the failure strains as a function of the loading path are in good qualitative agreement with the results of the cell model simulations
The yeast P5 type ATPase, Spf1, regulates manganese transport into the endoplasmic reticulum
The endoplasmic reticulum (ER) is a large, multifunctional and essential organelle. Despite intense research, the function of more than a third of ER proteins remains unknown even in the well-studied model organism Saccharomyces cerevisiae. One such protein is Spf1, which is a highly conserved, ER localized, putative P-type ATPase. Deletion of SPF1 causes a wide variety of phenotypes including severe ER stress suggesting that this protein is essential for the normal function of the ER. The closest homologue of Spf1 is the vacuolar P-type ATPase Ypk9 that influences Mn2+ homeostasis. However in vitro reconstitution assays with Spf1 have not yielded insight into its transport specificity. Here we took an in vivo approach to detect the direct and indirect effects of deleting SPF1. We found a specific reduction in the luminal concentration of Mn2+ in ∆spf1 cells and an increase following it’s overexpression. In agreement with the observed loss of luminal Mn2+ we could observe concurrent reduction in many Mn2+-related process in the ER lumen. Conversely, cytosolic Mn2+-dependent processes were increased. Together, these data support a role for Spf1p in Mn2+ transport in the cell. We also demonstrate that the human sequence homologue, ATP13A1, is a functionally conserved orthologue. Since ATP13A1 is highly expressed in developing neuronal tissues and in the brain, this should help in the study of Mn2+-dependent neurological disorders
Multisensory information facilitates reaction speed by enlarging activity difference between superior colliculus hemispheres in rats
Animals can make faster behavioral responses to multisensory stimuli than to unisensory stimuli. The superior colliculus (SC), which receives multiple inputs from different sensory modalities, is considered to be involved in the initiation of motor responses. However, the mechanism by which multisensory information facilitates motor responses is not yet understood. Here, we demonstrate that multisensory information modulates competition among SC neurons to elicit faster responses. We conducted multiunit recordings from the SC of rats performing a two-alternative spatial discrimination task using auditory and/or visual stimuli. We found that a large population of SC neurons showed direction-selective activity before the onset of movement in response to the stimuli irrespective of stimulation modality. Trial-by-trial correlation analysis showed that the premovement activity of many SC neurons increased with faster reaction speed for the contraversive movement, whereas the premovement activity of another population of neurons decreased with faster reaction speed for the ipsiversive movement. When visual and auditory stimuli were presented simultaneously, the premovement activity of a population of neurons for the contraversive movement was enhanced, whereas the premovement activity of another population of neurons for the ipsiversive movement was depressed. Unilateral inactivation of SC using muscimol prolonged reaction times of contraversive movements, but it shortened those of ipsiversive movements. These findings suggest that the difference in activity between the SC hemispheres regulates the reaction speed of motor responses, and multisensory information enlarges the activity difference resulting in faster responses
- …
