40 research outputs found

    When things go wrong : intra-season dynamics of breeding failure in a seabird

    Get PDF
    We thank all fieldworkers who helped monitor nests and deploy/retrieve GPS loggers, notably Muriel Dietrich, Elisa Lobato, Julien Gasparini, Vincent Staszewski and Thierry Chambert. We are grateful to Victor Garcia‐Mattarranz from the Ministerio de Medio Ambiente y Medio Rural y Marino (MARM, Spain) and Jacob Gonzalès‐Solís from University of Barcelona for their help on PTTs functioning and deployment. We thank Nina Dehnhard and two anonymous referees who provided useful comments and suggestions to improve this manuscript and Matthieu Authier for statistical advice. This study was funded by the French Polar Institute (IPEV, programme n°333 PARASITO‐ARCTIQUE), CNRS, ANR, OSU OREME, NINA, University of Tromsø, SEAPOP (www.seapop.no) and CEDREN. All work was carried out in accordance with standard animal care protocols and approved by the Ethical Committee of the French Polar Institute and the Norwegian Animal Research Authority. The PhD thesis of A. P. is partly funded via a Région Languedoc‐Roussillon program ‘Chercheur d'Avenir' support to T. B. and University of Montpellier 2.Peer reviewedPublisher PD

    Path analysis reveals combined winter climate and pollution effects on the survival of a marine top predator

    Get PDF
    Marine ecosystems are experiencing growing pressure from multiple threats caused by human activities, with far-reaching consequences for marine food webs. Determining the effects of multiple stressors is complex, in part, as they can affect different aspects of biological organisation (behaviour, individual traits and demographic rates). Determining the combined effects of stressors, through different biological pathways, is key to predict the consequences for the viability of populations threatened by global change. Due to their position in the food chain, top predators such as seabirds are considered more sensitive to environmental changes. Climate change is affecting the prey resources available for seabirds, through bottom-up effects, while organic pollutants can bioaccumulate in food chains with the greatest impacts on top predators. However, knowledge of their combined effects on population dynamics is scarce. Using a path analysis, we quantify the effects of climate change and pollution on the survival of adult great black-backed gulls, both directly and through effects of individuals' body mass. Warmer ocean temperatures in gulls' winter foraging areas in the North Sea were correlated with higher survival, potentially explained by shifts in prey availability associated with global climate change. We also found support for indirect negative effects of organochlorines, highly toxic pollutants to seabirds, on survival, which acted, in part, through a negative effect on body mass. The results from this path analysis highlight how, even for such long-lived species where variance in survival tends to be limited, two stressors still have had a marked influence on adult survival and illustrate the potential of path models to improve predictions of population variability under multiple stressors

    Temperature synchronizes temporal variation in laying dates across European hole-nesting passerines

    Get PDF
    Publisher Copyright: © 2022 The Authors. Ecology published by Wiley Periodicals LLC on behalf of The Ecological Society of America.Identifying the environmental drivers of variation in fitness-related traits is a central objective in ecology and evolutionary biology. Temporal fluctuations of these environmental drivers are often synchronized at large spatial scales. Yet, whether synchronous environmental conditions can generate spatial synchrony in fitness-related trait values (i.e., correlated temporal trait fluctuations across populations) is poorly understood. Using data from long-term monitored populations of blue tits (Cyanistes caeruleus, n = 31), great tits (Parus major, n = 35), and pied flycatchers (Ficedula hypoleuca, n = 20) across Europe, we assessed the influence of two local climatic variables (mean temperature and mean precipitation in February–May) on spatial synchrony in three fitness-related traits: laying date, clutch size, and fledgling number. We found a high degree of spatial synchrony in laying date but a lower degree in clutch size and fledgling number for each species. Temperature strongly influenced spatial synchrony in laying date for resident blue tits and great tits but not for migratory pied flycatchers. This is a relevant finding in the context of environmental impacts on populations because spatial synchrony in fitness-related trait values among populations may influence fluctuations in vital rates or population abundances. If environmentally induced spatial synchrony in fitness-related traits increases the spatial synchrony in vital rates or population abundances, this will ultimately increase the risk of extinction for populations and species. Assessing how environmental conditions influence spatiotemporal variation in trait values improves our mechanistic understanding of environmental impacts on populations.Peer reviewe

    Laparoscopic versus conventional appendectomy - a meta-analysis of randomized controlled trials

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although laparoscopic surgery has been available for a long time and laparoscopic cholecystectomy has been performed universally, it is still not clear whether open appendectomy (OA) or laparoscopic appendectomy (LA) is the most appropriate surgical approach to acute appendicitis. The purpose of this work is to compare the therapeutic effects and safety of laparoscopic and conventional "open" appendectomy by means of a meta-analysis.</p> <p>Methods</p> <p>A meta-analysis was performed of all randomized controlled trials published in English that compared LA and OA in adults and children between 1990 and 2009. Calculations were made of the effect sizes of: operating time, postoperative length of hospital stay, postoperative pain, return to normal activity, resumption of diet, complications rates, and conversion to open surgery. The effect sizes were then pooled by a fixed or random-effects model.</p> <p>Results</p> <p>Forty-four randomized controlled trials with 5292 patients were included in the meta-analysis. Operating time was 12.35 min longer for LA (95% CI: 7.99 to 16.72, p < 0.00001). Hospital stay after LA was 0.60 days shorter (95% CI: -0.85 to -0.36, p < 0.00001). Patients returned to their normal activity 4.52 days earlier after LA (95% CI: -5.95 to -3.10, p < 0.00001), and resumed their diet 0.34 days earlier(95% CI: -0.46 to -0.21, p < 0.00001). Pain after LA on the first postoperative day was significantly less (p = 0.008). The overall conversion rate from LA to OA was 9.51%. With regard to the rate of complications, wound infection after LA was definitely reduced (OR = 0.45, 95% CI: 0.34 to 0.59, p < 0.00001), while postoperative ileus was not significantly reduced(OR = 0.91, 95% CI: 0.57 to 1.47, p = 0.71). However, intra-abdominal abscess (IAA), intraoperative bleeding and urinary tract infection (UIT) after LA, occurred slightly more frequently(OR = 1.56, 95% CI: 1.01 to 2.43, p = 0.05; OR = 1.56, 95% CI: 0.54 to 4.48, p = 0.41; OR = 1.76, 95% CI: 0.58 to 5.29, p = 0.32).</p> <p>Conclusion</p> <p>LA provides considerable benefits over OA, including a shorter length of hospital stay, less postoperative pain, earlier postoperative recovery, and a lower complication rate. Furthermore, over the study period it was obvious that there had been a trend toward fewer differences in operating time for the two procedures. Although LA was associated with a slight increase in the incidence of IAA, intraoperative bleeding and UIT, it is a safe procedure. It may be that the widespread use of LA is due to its better therapeutic effect.</p

    Connecting the data landscape of long-term ecological studies: The SPI-Birds data hub

    Get PDF
    The integration and synthesis of the data in different areas of science is drastically slowed and hindered by a lack of standards and networking programmes. Long-term studies of individually marked animals are not an exception. These studies are especially important as instrumental for understanding evolutionary and ecological processes in the wild. Furthermore, their number and global distribution provides a unique opportunity to assess the generality of patterns and to address broad-scale global issues (e.g. climate change). To solve data integration issues and enable a new scale of ecological and evolutionary research based on long-term studies of birds, we have created the SPI-Birds Network and Database (www.spibirds.org)\u2014a large-scale initiative that connects data from, and researchers working on, studies of wild populations of individually recognizable (usually ringed) birds. Within year and a half since the establishment, SPI-Birds has recruited over 120 members, and currently hosts data on almost 1.5 million individual birds collected in 80 populations over 2,000 cumulative years, and counting. SPI-Birds acts as a data hub and a catalogue of studied populations. It prevents data loss, secures easy data finding, use and integration and thus facilitates collaboration and synthesis. We provide community-derived data and meta-data standards and improve data integrity guided by the principles of Findable, Accessible, Interoperable and Reusable (FAIR), and aligned with the existing metadata languages (e.g. ecological meta-data language). The encouraging community involvement stems from SPI-Bird's decentralized approach: research groups retain full control over data use and their way of data management, while SPI-Birds creates tailored pipelines to convert each unique data format into a standard format. We outline the lessons learned, so that other communities (e.g. those working on other taxa) can adapt our successful model. Creating community-specific hubs (such as ours, COMADRE for animal demography, etc.) will aid much-needed large-scale ecological data integration

    Definitions, pathophysiology, and epidemiology of acute cholangitis and cholecystitis: Tokyo Guidelines

    Get PDF
    This article discusses the definitions, pathophysiology, and epidemiology of acute cholangitis and cholecystitis. Acute cholangitis and cholecystitis mostly originate from stones in the bile ducts and gallbladder. Acute cholecystitis also has other causes, such as ischemia; chemicals that enter biliary secretions; motility disorders associated with drugs; infections with microorganisms, protozoa, and parasites; collagen disease; and allergic reactions. Acute acalculous cholecystitis is associated with a recent operation, trauma, burns, multisystem organ failure, and parenteral nutrition. Factors associated with the onset of cholelithiasis include obesity, age, and drugs such as oral contraceptives. The reported mortality of less than 10% for acute cholecystitis gives an impression that it is not a fatal disease, except for the elderly and/or patients with acalculous disease. However, there are reports of high mortality for cholangitis, although the mortality differs greatly depending on the year of the report and the severity of the disease. Even reports published in and after the 1980s indicate high mortality, ranging from 10% to 30% in the patients, with multiorgan failure as a major cause of death. Because many of the reports on acute cholecystitis and cholangitis use different standards, comparisons are difficult. Variations in treatment and risk factors influencing the mortality rates indicate the necessity for standardized diagnostic, treatment, and severity assessment criteria

    Ecosystems mediate climate impacts on northern hemisphere seabirds

    Get PDF
    Ecosystem structure and biophysical processes mediate biological responses to climate changes, but few studies have examined impacts of this dynamic among upper trophic levels. We investigated ecosystem differences in how diverse seabird populations across the northern hemisphere have responded to changes in regional mixed layer temperature and water column stratification. Using 138 time series of breeding productivity over the past half-century, we show that seabird reproductive productivity has declined in the Arctic and North Atlantic but not in the Pacific during a period of ubiquitous mixed layer warming and regionally-variable stratification trends. Models of breeding productivity and ocean drivers show that seabird responses to climate change vary by ecosystem. Additionally, ecosystems in which seabirds exhibit detectibly declining productivity tend to have lower overall diet diversity across seabird species. These findings emphasize the importance of ecosystem processes and structure in determining the vulnerability of marine predators to climate change

    Temperature synchronizes temporal variation in laying dates across European hole-nesting passerines

    Get PDF
    Identifying the environmental drivers of variation in fitness-related traits is a central objective in ecology and evolutionary biology. Temporal fluctuations of these environmental drivers are often synchronized at large spatial scales. Yet, whether synchronous environmental conditions can generate spatial synchrony in fitness-related trait values (i.e., correlated temporal trait fluctuations across populations) is poorly understood. Using data from long-term monitored populations of blue tits (Cyanistes caeruleus, n = 31), great tits (Parus major, n = 35), and pied flycatchers (Ficedula hypoleuca, n = 20) across Europe, we assessed the influence of two local climatic variables (mean temperature and mean precipitation in February-May) on spatial synchrony in three fitness-related traits: laying date, clutch size, and fledgling number. We found a high degree of spatial synchrony in laying date but a lower degree in clutch size and fledgling number for each species. Temperature strongly influenced spatial synchrony in laying date for resident blue tits and great tits but not for migratory pied flycatchers. This is a relevant finding in the context of environmental impacts on populations because spatial synchrony in fitness-related trait values among populations may influence fluctuations in vital rates or population abundances. If environmentally induced spatial synchrony in fitness-related traits increases the spatial synchrony in vital rates or population abundances, this will ultimately increase the risk of extinction for populations and species. Assessing how environmental conditions influence spatiotemporal variation in trait values improves our mechanistic understanding of environmental impacts on populations
    corecore