3,703 research outputs found
Higgs Boson Production with Bottom Quarks at Hadron Colliders
We present results for the production cross section of a Higgs Boson with a
pair of bottom/anti-bottom quarks, including next-to-leading order (NLO) QCD
corrections.Comment: 3 pages, 2 figures, uses ws-ijmpa.cls. Talk given by C.B. Jackson at
the Meeting of the Division of Particles and Fields (DPF2004) in Riverside,
CA, August 26-31, 200
Noncommutative families of instantons
We construct -deformations of the classical groups SL(2,H) and Sp(2).
Coacting on the basic instanton on a noncommutative four-sphere ,
we construct a noncommutative family of instantons of charge 1. The family is
parametrized by the quantum quotient of by .Comment: v2: Minor changes; computation of the pairing at the end of Sect. 5.1
improve
Formal deduction of the Saint-Venant-Exner model including arbitrarily sloping sediment beds and associated energy
In this work we present a deduction of the Saint-Venant-Exner model through
an asymptotic analysis of the Navier-Stokes equations. A multi-scale analysis
is performed in order to take into account that the velocity of the sediment
layer is smaller than the one of the fluid layer. This leads us to consider a
shallow water type system for the fluid layer and a lubrication Reynolds
equation for the sediment one. This deduction provides some improvements with
respect to the classical Saint-Venant-Exner model: (i) the deduced model has an
associated energy. Moreover, it allows us to explain why classical models do
not have an associated energy and how to modify them in order to recover a
model with this property. (ii) The model incorporates naturally a necessary
modification that must be taken into account in order to be applied to
arbitrarily sloping beds. Furthermore, we show that this modification is
different of the ones considered classically, and that it coincides with a
classical one only if the solution has a constant free surface. (iii) The
deduced solid transport discharge naturally depends on the thickness of the
moving sediment layer, what allows to ensure sediment mass conservation.
Moreover, we include a simplified version of the model for the case of
quasi-stationary regimes. Some of these simplified models correspond to the
generalization of classical ones such as Meyer-PeterM\"uller and
Ashida-Michiue models. Three numerical tests are presented to study the
evolution of a dune for several definition of the repose angle, to see the
influence of the proposed definition of the effective shear stress in
comparison with the classical one, and by comparing with experimental data.Comment: 44 pages, sumbitted to Advances in Water Resources 17 july 201
Theoretical progress for the associated production of a Higgs boson with heavy quarks at hadron colliders
The production of a Higgs boson in association with a pair of top-antitop or
bottom-antibottom quarks plays a very important role at both the Tevatron and
the Large Hadron Collider. The theoretical prediction of the corresponding
cross sections has been improved by including the complete next-to-leading
order QCD corrections. After a brief introduction, we review the results
obtained for both the Tevatron and the Large Hadron Collider.Comment: 3 pages, 6 figures, uses svjour.cls. Talk given by L. Reina at the
HEP2003 Europhysics Conference in Aachen, Germany (EPS 2003), July 17-23,
200
2D granular flows with the rheology and side walls friction: a well balanced multilayer discretization
We present here numerical modelling of granular flows with the
rheology in confined channels. The contribution is twofold: (i) a model to
approximate the Navier-Stokes equations with the rheology through an
asymptotic analysis. Under the hypothesis of a one-dimensional flow, this model
takes into account side walls friction; (ii) a multilayer discretization
following Fern\'andez-Nieto et al. (J. Fluid Mech., vol. 798, 2016, pp.
643-681). In this new numerical scheme, we propose an appropriate treatment of
the rheological terms through a hydrostatic reconstruction which allows this
scheme to be well-balanced and therefore to deal with dry areas. Based on
academic tests, we first evaluate the influence of the width of the channel on
the normal profiles of the downslope velocity thanks to the multilayer approach
that is intrinsically able to describe changes from Bagnold to S-shaped (and
vice versa) velocity profiles. We also check the well balance property of the
proposed numerical scheme. We show that approximating side walls friction using
single-layer models may lead to strong errors. Secondly, we compare the
numerical results with experimental data on granular collapses. We show that
the proposed scheme allows us to qualitatively reproduce the deposit in the
case of a rigid bed (i. e. dry area) and that the error made by replacing the
dry area by a small layer of material may be large if this layer is not thin
enough. The proposed model is also able to reproduce the time evolution of the
free surface and of the flow/no-flow interface. In addition, it reproduces the
effect of erosion for granular flows over initially static material lying on
the bed. This is possible when using a variable friction coefficient
but not with a constant friction coefficient
Multilayer shallow water models with locally variable number of layers and semi-implicit time discretization
We propose an extension of the discretization approaches for multilayer
shallow water models, aimed at making them more flexible and efficient for
realistic applications to coastal flows. A novel discretization approach is
proposed, in which the number of vertical layers and their distribution are
allowed to change in different regions of the computational domain.
Furthermore, semi-implicit schemes are employed for the time discretization,
leading to a significant efficiency improvement for subcritical regimes. We
show that, in the typical regimes in which the application of multilayer
shallow water models is justified, the resulting discretization does not
introduce any major spurious feature and allows again to reduce substantially
the computational cost in areas with complex bathymetry. As an example of the
potential of the proposed technique, an application to a sediment transport
problem is presented, showing a remarkable improvement with respect to standard
discretization approaches
- …
