7,095 research outputs found
Rapid detection of bacteria in foods and biological fluids
Simple and inexpensive apparatus, called "redox monitoring cell," rapidly detects presence of bacteria. Bacteria is detected by measuring drop in oxygen content in test solution. Apparatus consists of vial with two specially designed electrodes connected to sensitive voltmeter
Angular Momentum Decomposition for an Electron
We calculate the orbital angular momentum of the `quark' in the scalar
diquark model as well as that of the electron in QED (to order ). We
compare the orbital angular momentum obtained from the Jaffe-Manohar
decomposition to that obtained from the Ji relation and estimate the importance
of the vector potential in the definition of orbital angular momentum
An information-theoretic security proof for QKD protocols
We present a new technique for proving the security of quantum key
distribution (QKD) protocols. It is based on direct information-theoretic
arguments and thus also applies if no equivalent entanglement purification
scheme can be found. Using this technique, we investigate a general class of
QKD protocols with one-way classical post-processing. We show that, in order to
analyze the full security of these protocols, it suffices to consider
collective attacks. Indeed, we give new lower and upper bounds on the
secret-key rate which only involve entropies of two-qubit density operators and
which are thus easy to compute. As an illustration of our results, we analyze
the BB84, the six-state, and the B92 protocol with one-way error correction and
privacy amplification. Surprisingly, the performance of these protocols is
increased if one of the parties adds noise to the measurement data before the
error correction. In particular, this additional noise makes the protocols more
robust against noise in the quantum channel.Comment: 18 pages, 3 figure
Axial charges of octet and decuplet baryons
We present a study of axial charges of baryon ground and resonant states with
relativistic constituent quark models. In particular, the axial charges of
octet and decuplet , , , , , and
baryons are considered. The theoretical predictions are compared to existing
experimental data and results from other approaches, notably from lattice
quantum chromodynamics and chiral perturbation theory. The relevance of axial
charges with regard to -dressing and spontaneous chiral-symmetry breaking
is discussed
Locking of accessible information and implications for the security of quantum cryptography
The unconditional security of a quantum key distribution protocol is often
defined in terms of the accessible information, that is, the maximum mutual
information between the distributed key S and the outcome of an optimal
measurement on the adversary's (quantum) system. We show that, even if this
quantity is small, certain parts of the key S might still be completely
insecure when S is used in applications, such as for one-time pad encryption.
This flaw is due to a locking property of the accessible information: one
additional (physical) bit of information might increase the accessible
information by more than one bit.Comment: 5 pages; minor change
Endotaxial Si nanolines in Si(001):H
We present a detailed study of the structural and electronic properties of a
self-assembled silicon nanoline embedded in the H-terminated silicon (001)
surface, known as the Haiku stripe. The nanoline is a perfectly straight and
defect free endotaxial structure of huge aspect ratio; it can grow micrometre
long at a constant width of exactly four Si dimers (1.54nm). Another remarkable
property is its capacity to be exposed to air without suffering any
degradation. The nanoline grows independently of any step edges at tunable
densities, from isolated nanolines to a dense array of nanolines. In addition
to these unique structural characteristics, scanning tunnelling microscopy and
density functional theory reveal a one-dimensional state confined along the
Haiku core. This nanoline is a promising candidate for the long sought after
electronic solid-state one-dimensional model system to explore the fascinating
quantum properties emerging in such reduced dimensionality.Comment: 8 pages, 6 figure
Security of quantum key distribution protocols using two-way classical communication or weak coherent pulses
We apply the techniques introduced in [Kraus et. al., Phys. Rev. Lett. 95,
080501, 2005] to prove security of quantum key distribution (QKD) schemes using
two-way classical post-processing as well as QKD schemes based on weak coherent
pulses instead of single-photon pulses. As a result, we obtain improved bounds
on the secret-key rate of these schemes
Structure of self-assembled Mn atom chains on Si(001)
Mn has been found to self-assemble into atomic chains running perpendicular
to the surface dimer reconstruction on Si(001). They differ from other atomic
chains by a striking asymmetric appearance in filled state scanning tunneling
microscopy (STM) images. This has prompted complicated structural models
involving up to three Mn atoms per chain unit. Combining STM, atomic force
microscopy and density functional theory we find that a simple necklace-like
chain of single Mn atoms reproduces all their prominent features, including
their asymmetry not captured by current models. The upshot is a remarkably
simpler structure for modelling the electronic and magnetic properties of Mn
atom chains on Si(001).Comment: 5 pages, 4 figure
- …
