484 research outputs found
The S shape of a granular pile in a rotating drum
The shape of a granular pile in a rotating drum is investigated. Using
Discrete Elements Method (DEM) simulations we show that the "S shape" obtained
for high rotation speed can be accounted for by the friction on the end plates.
A theoretical model which accounts for the effect of the end plates is
presented and the equation of the shape of the free surface is derived. The
model reveals a dimensionless number which quantifies the influence of the end
plates on the shape of the pile. Finally, the scaling laws of the system are
discussed and numerical results support our conclusions
Impact of volatile phenols and their precursors on wine quality and control measures of Brettanomyces/Dekkera yeasts
Volatile phenols are aromatic compounds and one of the key molecules responsible for olfactory defects in wine. The yeast genus Brettanomyces is the only major microorganism that has the ability to covert hydroxycinnamic acids into important levels of these compounds, especially 4-ethylphenol and 4-ethylguaiacol, in red wine. When 4-ethylphenols reach concentrations greater than the sensory threshold, all wine’s organoleptic characteristics might be influenced or damaged. The aim of this literature review is to provide a better understanding of the physicochemical, biochemical, and metabolic factors that are related to the levels of p-coumaric acid and volatile phenols in wine. Then, this work summarizes the different methods used for controlling the presence of Brettanomyces in wine and the production of ethylphenols
Non-clinically trained facilitators' experiences of remote psychosocial interventions for older adults with memory loss and their family carers
LCA applied to perennial cropping systems: a review focused on the farm stage
International audienc
Numerical simulation of 2D steady granular flows in rotating drum: On surface flows rheology
13 pages, 14 figures, 61 references, submitted to Phys. FluidsThe rheology of 2D steady surface flow of cohesionless cylinders in a rotating drum is investigated through {\em Non Smooth Contact Dynamics} simulations. Profile of volume fraction, translational and angular velocity, rms velocity, strain rate and stress tensor were measured at the midpoint along the length of the surface flowing layer where the flow is generally considered as steady and homogeneous. Analysis of these data and their inter-relations suggest the local inertial number - defined as the ratio between local inertial forces and local confinement forces - to be the relevant dimensionless parameter to describe the transition from the quasi-static part of the packing to the flowing part at the surface of the heap. Variations of the components of the stress tensor as well as the ones of rms velocity as a function of the inertial number are analysed within both the quasi-static and the flowing phases. Their implications are discussed
Yeast biodiversity in vineyard environments is increased by human intervention
One hundred and five grape samples were collected during two consecutive years from 33 locations on seven oceanic islands of the Azores Archipelago. Grape samples were obtained from vineyards that were either abandoned or under regular cultivation involving common viticultural interventions, to evaluate the impact of regular human intervention on grape yeast biota diversity in vineyards. A total of 3150 yeast isolates were obtained and 23 yeast species were identified. The predominant species were Hanseniaspora uvarum, Pichia terricola, Starmerella bacillaris and Issatchenkia hanoiensis. The species Barnettozyma californica, Candida azymoides and Pichia cecembensis were reported in grapes or wine-associated environments for the first time. A higher biodiversity was found in active vineyards where regular human intervention takes place (Shannon index: 1.89 and 1.53 in the first and second years, respectively) when compared to the abandoned ones (Shannon index: 0.76 and 0.31). This finding goes against the assumptions that human intervention can destroy biodiversity and lead to homogeneity in the environment. Biodiversity indices were considerably lower in the year with the heaviest rainfall. This study is the first to report on the grape yeast communities from several abandoned vineyards that have undergone no human intervention.Joao Drumonde Neves is the recipient of a fellowship of the Azorean Government (M321/006/F/2008) and PROEMPREGO. This work was supported by the strategic programme UID/BIA/04050/2013 (POCI-01-0145-FEDER-007569) funded by national funds through the FCT I.P. and by the ERDF through the COMPETE2020 - Programa Operacional Competitividade e Internacionalizacao (POCI), and by national funds through FCT by the projects FCOMP-01-0124-008775, PTDC/AGR-ALI/103392/2008 and PTDC/AGR-ALI/121062/2010.info:eu-repo/semantics/publishedVersio
Yeasts and wine off-flavours: a technological perspective
Review article. Part of the special issue "Wine microbiology and safety: from the vineyard to the bottle (Microsafety Wine)", 19-20 Nov. 2009, ItalyIn wine production, yeasts have both beneficial
and detrimental activities. Saccharomyces cerevisiae is the
yeast mainly responsible for turning grape juice into wine
but this species and several others may also show
undesirable effects in wines. Among such effects, technologists
are particularly concerned with the production of offflavours
that may occur during all stages of winemaking.
Typical spoiling activities include the production of ethyl
acetate by apiculate yeasts before fermentation, hydrogen
sulphide by S. cerevisiae during fermentation phases,
acetaldehyde by film-forming yeasts during bulk storage,
and volatile phenols by Dekkera bruxellensis during storage
or after bottling. The occurrence of these hazards depends
on the technological operations designed to obtain a given
type of wine and most can be avoided by current preventive
or curative measures. On the contrary, good manufacturing
practices must be strengthened to deal with the problem of
volatile phenol production in red wines. Appropriate
monitoring of D. bruxellensis populations and quantification
of 4-ethylphenol is advised during storage, particularly
when oak barrels are used, and absence of viable cells must
be guaranteed in bottled wines. This work, which is based
on our experience at winery level, aims to provide
information on appropriate technological strategies to deal
with the problem of off-flavours produced by yeasts
Ascomycetous yeast species recovered from grapes damaged by honeydew and sour rot
Aims: To identify ascomycetous yeasts recovered from sound and damaged
grapes by the presence of honeydew or sour rot.
Methods and Results: In sound grapes, the mean yeast counts ranged from
3.20 ± 1.04 log CFU g-1 to 5.87 ± 0.64 log CFU g-1. In honeydew grapes, the
mean counts ranged from 3.88 ± 0.80 log CFU g-1 to 6.64 ± 0.77 log CFU g-1.
In sour rot grapes counts varied between 6.34 ± 1.03 and 7.68 ± 0.38 log
CFU g-1. Hanseniaspora uvarum was the most frequent species from sound
samples. In both types of damage, the most frequent species were Candida vanderwaltii,
H. uvarum and Zygoascus hellenicus. The latter species was recovered
in high frequency because of the utilization of the selective medium DBDM
(Dekkera ⁄ Brettanomyces differential medium). The scarce isolation frequency of
the wine spoilage species Zygosaccharomyces bailii (in sour rotten grapes) and
Zygosaccharomyces bisporus (in honeydew affected grapes) could only be
demonstrated by the use of the selective medium ZDM (Zygosaccharomyces
differential medium).
Conclusions: The isolation of several species only from damaged grapes indicates
that damage constituted the main factor determining yeast diversity. The
utilization of selective media is required for eliciting the recovery of potentially
wine spoilage species.
Significance and Impact of the Study: The impact of damaged grapes in the yeast ecology of grapes has been underestimate
Consolidation of surface charging analyses on the Ariel payload dielectrics in the early transfer orbit and L2 space environments
Treatment with a BH3 mimetic overcomes the resistance of latency III EBV (+) cells to p53-mediated apoptosis
P53 inactivation is often observed in Burkitt's lymphoma (BL) cells due to mutations in the p53 gene or overexpression of its negative regulator, murine double minute-2 (MDM2). This event is now considered an essential part of the oncogenic process. Epstein–Barr virus (EBV) is strongly associated with BL and is a cofactor in its development. We previously showed that nutlin-3, an antagonist of MDM2, activates the p53 pathway in BL cell lines harboring wild-type p53. However, nutlin-3 strongly induced apoptosis in EBV (−) or latency I EBV (+) cells, whereas latency III EBV (+) cells were much more resistant. We show here that this resistance to apoptosis is also observed in latency III EBV (+) lymphoblastoid cell lines. We also show that, in latency III EBV (+) cells, B-cell lymphona 2 (Bcl-2) is selectively overproduced and interacts with Bcl-2-associated X protein (Bax), preventing its activation. The treatment of these cells with the Bcl-2-homology domain 3 mimetic ABT-737 disrupts Bax/Bcl-2 interaction and allows Bax activation by nutlin-3. Furthermore, treatment with these two compounds strongly induces apoptosis. Thus, a combination of Mdm2 and Bcl-2 inhibitors might be a useful anti-cancer strategy for diseases linked to EBV infection
- …
