5,845 research outputs found

    Movement Restrictions, Agricultural Trade and Price Transmission between Israel and the West Bank

    Get PDF
    Imposing military security measures as a consequence of violent conflict may lead to depressing economic effects for all parties involved. One implication is the limited ability to conduct trade, which in turn brings about welfare losses to the economic agents involved and may threat livelihoods and food security. This paper focuses on the consequences of the Israeli-Palestinian conflict, as a prominent example, on bilateral agricultural trade and price dynamics. For this purpose, we consider high-frequency wholesale price data and data on movement restrictions (complete closures) which were imposed by the Israeli Defense Forces in the West Bank between May 2007 and December 2008. In particular, we study the price dynamics of cucumbers and apples, two crops which play an important role for bilateral trade. The spatial and temporal price relationships are assessed using a cointegration framework. Specifically, we use a novel multivariate exogenous regime-switching vector error correction model and employ a recently developed extension of Johansen’s cointegration estimation method. We find the wholesale markets of cucumbers and apples in Hebron and Tel Aviv to be integrated. For both products, the price differentials between both markets quickly adjust to short run deviations from the long-run price equilibria. The regime-dependent model suggests that the movement restrictions effectively cut off both markets from each other temporarily.Agricultural trade, cointegration, Israel, regime-dependent error correction, price transmission, Palestinian territories., International Relations/Trade, Marketing, Political Economy,

    Superconducting Circuits for Quantum Simulation of Dynamical Gauge Fields

    Full text link
    We describe a superconducting-circuit lattice design for the implementation and simulation of dynamical lattice gauge theories. We illustrate our proposal by analyzing a one-dimensional U(1) quantum-link model, where superconducting qubits play the role of matter fields on the lattice sites and the gauge fields are represented by two coupled microwave resonators on each link between neighboring sites. A detailed analysis of a minimal experimental protocol for probing the physics related to string breaking effects shows that despite the presence of decoherence in these systems, distinctive phenomena from condensed-matter and high-energy physics can be visualized with state-of-the-art technology in small superconducting-circuit arrays

    Tribological behaviour of polyalphaolefins: wear and rolling contact fatigue tests

    Get PDF
    Polyalphaolefin fluids are gaining rapid acceptance as high-performance lubricants and functional fluids because they have certain inherent, and highly desirable, characteristics relative to mineral oils. One of these characteristics is their low toxicity. It combined with excellent viscometrics and lubricity, have made low-viscosity PAO fluids an important component in lubricant formulations. Typical data found in product specifications for lubricants are the kinematic viscosity and the viscosity index. These values do not give enough information to choose the optimum lubricant for a lubricated contact. In mechanical systems take place rolling, sliding and rolling/sliding contacts, therefore lubricants have to work the best possible in these operation conditions. In this study are experimentally determined the L50, L10 and Weibull´s slope () of polyalphaolefins with two different viscosities. This test was made on a four-ball machine (Stanhope Seta). Wear test also was made on a four-ball tester (Roxana) in order to measure the wear scar diameter (WSD), and the flash temperature parameter (FTP). Lubricants were identified through infrared spectroscopy, and ball´s pittings were observed with SEM

    Loops and Strings in a Superconducting Lattice Gauge Simulator

    Get PDF
    We propose an architecture for an analog quantum simulator of electromagnetism in 2+1 dimensions, based on an array of superconducting fluxonium devices. The encoding is in the integer (spin-1 representation of the quantum link model formulation of compact U(1) lattice gauge theory. We show how to engineer Gauss' law via an ancilla mediated gadget construction, and how to tune between the strongly coupled and intermediately coupled regimes. The witnesses to the existence of the predicted confining phase of the model are provided by nonlocal order parameters from Wilson loops and disorder parameters from 't Hooft strings. We show how to construct such operators in this model and how to measure them nondestructively via dispersive coupling of the fluxonium islands to a microwave cavity mode. Numerical evidence is found for the existence of the confined phase in the ground state of the simulation Hamiltonian on a ladder geometry.Comment: 17 pages, 5 figures. Published versio

    A New Generation Gap? Some thoughts on the consequences of increasingly early ICT first contact

    Get PDF
    One possible consequence of ICT’s rapid rise will be a new ‘generation gap’ arising from differing perceptions of the learning technologies. The nature, causes and consequences of this gap are of interest to educational practitioners and policymakers. This paper uses data from an ongoing project together with a synopsis of research to describe the ICT-based generation gap that currently exists between students and their teachers and parents. It is argued that this gap may exist between students differing in age by as little as five years. Results from a related project exploring Networked Information and Communication Literacy Skills (NICLS), are used to introduce a discussion on the nature of any skills gap that must be addressed in the light of this generation gap

    Reentrance of disorder in the anisotropic shuriken Ising model

    Full text link
    For a material to order upon cooling is common sense. What is more seldom is for disorder to reappear at lower temperature, which is known as reentrant behavior. Such resurgence of disorder has been observed in a variety of systems, ranging from Rochelle salts to nematic phases in liquid crystals. Frustration is often a key ingredient for reentrance mechanisms. Here we shall study a frustrated model, namely the anisotropic shuriken lattice, which offers a natural setting to explore an extension of the notion of reentrance between magnetic disordered phases. By tuning the anisotropy of the lattice, we open a window in the phase diagram where magnetic disorder prevails down to zero temperature. In this region, the competition between multiple disordered ground states gives rise to a double crossover where both the low- and high-temperature regimes are less correlated than the intervening classical spin liquid. This reentrance of disorder is characterized by an entropy plateau, a multi-step Curie law crossover and a rather complex diffuse scattering in the static structure factor. Those results are confirmed by complementary numerical and analytical methods: Monte Carlo simulations, Husimi-tree calculations and an exact decoration-iteration transformation.Comment: 16 pages, 13 figure

    Atomic Quantum Simulation of U(N) and SU(N) Non-Abelian Lattice Gauge Theories

    Full text link
    Using ultracold alkaline-earth atoms in optical lattices, we construct a quantum simulator for U(N) and SU(N) lattice gauge theories with fermionic matter based on quantum link models. These systems share qualitative features with QCD, including chiral symmetry breaking and restoration at non-zero temperature or baryon density. Unlike classical simulations, a quantum simulator does not suffer from sign problems and can address the corresponding chiral dynamics in real time.Comment: 12 pages, 5 figures. Main text plus one basic introduction to the topic and one supplementary material on implementation. Final versio
    corecore