15,683 research outputs found
Optical spectroscopy of a microsized Rb vapour sample in magnetic fields up to 58 tesla
We use a magnetometer probe based on the Zeeman shift of the rubidium
resonant optical transition to explore the atomic magnetic response for a wide
range of field values. We record optical spectra for fields from few tesla up
to 60 tesla, the limit of the coil producing the magnetic field. The atomic
absorption is detected by the fluorescence emissions from a very small region
with a submillimiter size. We investigate a wide range of magnetic interactions
from the hyperfine Paschen-Back regime to the fine one, and the transitions
between them. The magnetic field measurement is based on the rubidium
absorption itself. The rubidium spectroscopic constants were previously
measured with high precision, except the excited state Land\'e -factor that
we derive from the position of the absorption lines in the transition to the
fine Paschen-Back regime. Our spectroscopic investigation, even if limited by
the Doppler broadening of the absorption lines, measures the field with a 20
ppm uncertainty at the explored high magnetic fields. Its accuracy is limited
to 75 ppm by the excited state Land\'e -factor determination
Possible Suppression of Resonant Signals for Split-UED by Mixing at the LHC?
The mixing of the imaginary parts of the transition amplitudes of nearby
resonances via the breakdown of the Breit-Wigner approximation has been shown
to lead to potentially large modifications in the signal rates for new physics
at colliders. In the case of suppression, this effect may be significant enough
to lead to some new physics signatures being initially missed in searches at,
e.g., the LHC. Here we explore the influence of this `width mixing' on the
production of the nearly degenerate, level-2 Kaluza-Klein (KK) neutral gauge
bosons present in Split-UED. We demonstrate that in this particular case large
cross section modifications in the resonance region are necessarily absent and
explain why this is so based on the group theoretical structure of the SM.Comment: 10 pages, 2 figures; discussion and references adde
Electroweak precision measurements and collider probes of the Standard Model with large extra dimensions
The elementary particles of the Standard Model may live in more than 3+1
dimensions. We study the consequences of large compactified dimensions on
scattering and decay observables at high-energy colliders. Our analysis
includes global fits to electroweak precision data, indirect tests at
high-energy electron-positron colliders (LEP2 and NLC), and direct probes of
the Kaluza-Klein resonances at hadron colliders (Tevatron and LHC). The present
limits depend sensitively on the Higgs sector, both the mass of the Higgs boson
and how many dimensions it feels. If the Higgs boson is trapped on a 3+1
dimensional wall with the fermions, large Higgs masses (up to 500 GeV) and
relatively light Kaluza-Klein mass scales (less than 4 TeV) can provide a good
fit to precision data. That is, a light Higgs boson is not necessary to fit the
electroweak precision data, as it is in the Standard Model. If the Higgs boson
propagates in higher dimensions, precision data prefer a light Higgs boson
(less than 260 GeV), and a higher compactification scale (greater than 3.8
TeV). Future colliders can probe much larger scales. For example, a 1.5 TeV
electron-positron linear collider can indirectly discover Kaluza-Klein
excitations up to 31 TeV if 500 fb^-1 integrated luminosity is obtained.Comment: 29 pages, LaTe
Atmospheric turbulence and superstatistics
Nonequilibrium systems with large-scale fluctuations of a suitable system
parameter are often effectively described by a superposition of two statistics,
a superstatistics. Here we illustrate this concept by analysing experimental
data of fluctuations in atmospheric wind velocity differences at Florence
airport.Comment: 9 pages, 4 figures. New version to appear in Europhysics News (2005
Single Production in Collisions at the NLC
Single production in collisions at the NLC can be used to
probe the Majorana nature of the heavy neutrinos present in the Left-Right
Symmetric Model below the kinematic threshold for their direct production. For
colliders in the TeV range, typical cross sections of order
are obtained, depending on the specific choice of model parameters.
Backgrounds arising from Standard Model processes are shown to be small. This
analysis greatly extends the kinematic range of previous studies wherein the
production of an on-shell, like-sign pair of 's at the NLC was considered.Comment: 13pp, 3 figures (available on request), LaTex, SLAC-PUB-647
Ataxia in children: early recognition and clinical evaluation
Background: Ataxia is a sign of different disorders involving any level of the nervous system and consisting of impaired coordination of movement and balance. It is mainly caused by dysfunction of the complex circuitry connecting the basal ganglia, cerebellum and cerebral cortex.
A careful history, physical examination and some characteristic maneuvers are useful for the diagnosis of ataxia. Some of the causes of ataxia point toward a benign course, but some cases of ataxia can be severe and particularly frightening.
Methods: Here, we describe the primary clinical ways of detecting ataxia, a sign not easily recognizable in children. We also report on the main disorders that cause ataxia in children.
Results: The causal events are distinguished and reported according to the course of the disorder: acute, intermittent, chronic-non-progressive and chronic-progressive.
Conclusions: Molecular research in the field of ataxia in children is rapidly expanding; on the contrary no similar results have been attained in the field of the treatment since most of the congenital forms remain fully untreatable. Rapid recognition and clinical evaluation of ataxia in children remains of great relevance for therapeutic results and prognostic counseling
Intensity Thresholds and the Statistics of the Temporal Occurrence of Solar Flares
Introducing thresholds to analyze time series of emission from the Sun
enables a new and simple definition of solar flare events, and their
interoccurrence times. Rescaling time by the rate of events, the waiting and
quiet time distributions both conform to scaling functions that are independent
of the intensity threshold over a wide range. The scaling functions are well
described by a two parameter function, with parameters that depend on the phase
of the solar cycle. For flares identified according to the current, standard
definition, similar behavior is found.Comment: 5 pages, 4 figures, revtex
On Spin-Glass Complexity
We study the quenched complexity in spin-glass mean-field models satisfying
the Becchi-Rouet-Stora-Tyutin supersymmetry. The outcome of such study,
consistent with recent numerical results, allows, in principle, to conjecture
the absence of any supersymmetric contribution to the complexity in the
Sherrington-Kirkpatrick model. The same analysis can be applied to any model
with a Full Replica Symmetry Breaking phase, e.g. the Ising -spin model
below the Gardner temperature. The existence of different solutions, breaking
the supersymmetry, is also discussed.Comment: 4 pages, 2 figures; Text changed in some parts, typos corrected,
Refs. [17],[21] and [22] added, two Refs. remove
Transport properties in correlated systems: An analytical model
Several studies have so far investigated transport properties of strongly
correlated systems. Interesting features of these materials are the lack of
resistivity saturation well beyond the Mott-Ioffe-Regel limit and the scaling
of the resistivity with the hole density in underdoped cuprates. Due to the
strongly correlated nature of these materials, mainly numerical techniques have
been employed. A key role in this regards is thought to be played by the
continuous transfer of spectral weight from coherent to incoherent states. In
this paper we employ a simple analytical expression for the electronic Green's
function to evaluate both quasi-particle and transport properties in correlated
systems. Our analytical approach permits to enlighten the specific role of the
spectral transfer due to the correlation on different features. In particular
we investigate the dependence of both quasi-particle and transport scattering
rate on the correlation degree and the criterion for resistivity saturation.
systems.Comment: 11 pages, 8 figures. New version correcting a mistake of the previous
version and added figure
Quantum Gravity Effects in Black Holes at the LHC
We study possible back-reaction and quantum gravity effects in the
evaporation of black holes which could be produced at the LHC through a
modification of the Hawking emission. The corrections are phenomenologically
taken into account by employing a modified relation between the black hole mass
and temperature. The usual assumption that black holes explode around TeV
is also released, and the evaporation process is extended to (possibly much)
smaller final masses. We show that these effects could be observable for black
holes produced with a relatively large mass and should therefore be taken into
account when simulating micro-black hole events for the experiments planned at
the LHC.Comment: 14 pages, 8 figures, extended version of hep-ph/0601243 with new
analysis of final products, final version accepted for publication in J.
Phys.
- …
