2,511 research outputs found
Variable Free Spectral Range Spherical Mirror Fabry-Perot Interferometer
A spherical Fabry-Perot interferometer with adjustable mirror spacing is used
to produce interference fringes with frequency separation (c/2L)/N, N=2-15. The
conditions for observation of these fringes are derived from the consideration
of the eigenmodes of the cavity with high transverse indices.Comment: 11 pages, 7 figures, accepted to Siberian Journal of Physic
Influence of magnetic-field inhomogeneity on nonlinear magneto-optical resonances
In this work, a sensitivity of the rate of relaxation of ground-state atomic
coherences to magnetic-field inhomogeneities is studied. Such coherences give
rise to many interesting phenomena in light-atom interactions, and their
lifetimes are a limiting factor for achieving better sensitivity, resolution or
contrast in many applications. For atoms contained in a vapor cell, some of the
coherence-relaxation mechanisms are related to magnetic-field inhomogeneities.
We present a simple model describing relaxation due to such inhomogeneities in
a buffer-gas-free anti-relaxation coated cell. A relation is given between
relaxation rate and magnetic-field inhomogeneities including the dependence on
cell size and atomic spices. Experimental results, which confirm predictions of
the model, are presented. Different regimes, in which the relaxation rate is
equally sensitive to the gradients in any direction and in which it is
insensitive to gradients transverse to the bias magnetic field, are predicted
and demonstrated experimentally.Comment: 6 pages, 4 figures, Submitted to Phys. Rev.
Nonlinear magneto-optical rotation in optically thick media
Nonlinear magneto-optical rotation is a sensitive technique for measuring
magnetic fields. Here, the shot-noise-limited magnetometric sensitivity is
analyzed for the case of optically-thick media and high light power, which has
been the subject of recent experimental and theoretical investigations.Comment: 7 pages, 4 figure
Artificial Intelligence
Contains a report on a research project.M.I.T. Research Laboratory of ElectronicsM.I.T. Computation Cente
Can a quantum nondemolition measurement improve the sensitivity of an atomic magnetometer?
Noise properties of an idealized atomic magnetometer that utilizes spin
squeezing induced by a continuous quantum nondemolition measurement are
considered. Such a magnetometer measures spin precession of atomic spins by
detecting optical rotation of far-detuned light. Fundamental noise sources
include the quantum projection noise and the photon shot-noise. For measurement
times much shorter than the spin-relaxation time observed in the absence of
light () divided by , the optimal sensitivity of the
magnetometer scales as , so an advantage over the usual sensitivity
scaling as can be achieved. However, at longer measurement times,
the optimized sensitivity scales as , as for a usual shot-noise
limited magnetometer. If strongly squeezed probe light is used, the Heisenberg
uncertainty limit may, in principle, be reached for very short measurement
times. However, if the measurement time exceeds , the
scaling is again restored.Comment: Some details of calculations can be found in a companion note:
physics/040712
Hyperpolarized xenon nuclear spins detected by optical atomic magnetometry
We report the use of an atomic magnetometer based on nonlinear
magneto-optical rotation with frequency modulated light (FM NMOR) to detect
nuclear magnetization of xenon gas. The magnetization of a
spin-exchange-polarized xenon sample (cm at a pressure of bar,
natural isotopic abundance, polarization 1%), prepared remotely to the
detection apparatus, is measured with an atomic sensor (which is insensitive to
the leading field of 0.45 G applied to the sample; an independent bias field at
the sensor is G). An average magnetic field of nG induced by
the xenon sample on the 10-cm diameter atomic sensor is detected with
signal-to-noise ratio , limited by residual noise in the magnetic
environment. The possibility of using modern atomic magnetometers as detectors
of nuclear magnetic resonance and in magnetic resonance imaging is discussed.
Atomic magnetometers appear to be ideally suited for emerging low-field and
remote-detection magnetic resonance applications.Comment: 4 pages, 4 figure
AC Stark shift noise in QND measurement arising from quantum fluctuations of light polarization
In a recent letter [Auzinsh {\it{et. al.}} (physics/0403097)] we have
analyzed the noise properties of an idealized atomic magnetometer that utilizes
spin squeezing induced by a continuous quantum nondemolition measurement. Such
a magnetometer measures spin precession of atomic spins by detecting
optical rotation of far-detuned probe light. Here we consider maximally
squeezed probe light, and carry out a detailed derivation of the contribution
to the noise in a magnetometric measurement due to the differential AC Stark
shift between Zeeman sublevels arising from quantum fluctuations of the probe
polarization.Comment: This is a companion note to physics/040309
Cancellation of nonlinear Zeeman shifts with light shifts
Nonlinear Zeeman (NLZ) shifts arising from magnetic-field mixing of the two
hyperfine ground-states in alkali atoms lead to splitting of magnetic-resonance
lines. This is a major source of sensitivity degradation and the so-called
"heading errors" of alkali-vapor atomic magnetometers operating in the
geophysical field range (B approx. 0.2-0.7 G). Here, it is shown theoretically
and experimentally that NLZ shifts can be effectively canceled by light shifts
caused by a laser field of appropriate intensity, polarization and frequency, a
technique that can be readily applied in practical situations.Comment: 5 pages, 5 figures, to be published in PR
Detection of radio frequency magnetic fields using nonlinear magneto-optical rotation
We describe a room-temperature alkali-metal atomic magnetometer for detection
of small, high frequency magnetic fields. The magnetometer operates by
detecting optical rotation due to the precession of an aligned ground state in
the presence of a small oscillating magnetic field. The resonance frequency of
the magnetometer can be adjusted to any desired value by tuning the bias
magnetic field. We demonstrate a sensitivity of in a 3.5 cm diameter, paraffin coated cell. Based
on detection at the photon shot-noise limit, we project a sensitivity of
.Comment: 6 pages, 6 figure
- …
