200 research outputs found

    Deep learning atmospheric prediction algorithm for enhanced Mars EDL guidance

    Get PDF
    Uncertainty in atmospheric density and wind is a major cause of suboptimal performance in the Entry, Descent, and Landing (EDL) guidance at Mars. We improve the robustness of current EDL guidance algorithms to uncertain dynamic environments by proposing a reliable on-board atmospheric estimation algorithm. The algorithm consists of a deep, recurrent neural network using an efficient architecture for time-series predictions, the Long Short-Term Memory (LSTM) cell. The LSTM network is trained on entry trajectories simulated with the Fully Numerical Predictor-corrector Guidance (FNPEG); in each trajectory the vehicle is subject to density and wind fields from instances of the Mars Global Reference Atmospheric Model (GRAM) 2010. Predictions of density and wind as a function of altitude expected along the trajectory are obtained from onboard acceleration measurements and state estimates. The algorithm achieves a RMS value over time for the relative density error in the order of 10 % for samples in the validation dataset, and significantly improves performance with respect to an exponential fit to the density

    Interplay between r- and K-strategists leads to phytoplankton underyielding under pulsed resource supply

    Get PDF
    Fluctuations in nutrient ratios over seasonal scales in aquatic ecosystems can result in overyielding, a condition arising when complementary life-history traits of coexisting phytoplankton species enables more complete use of resources. However, when nutrient concentrations fluctuate under short-period pulsed resource supply, the role of complementarity is less understood. We explore this using the framework of Resource Saturation Limitation Theory (r-strategists vs. K-strategists) to interpret findings from laboratory experiments. For these experiments, we isolated dominant species from a natural assemblage, stabilized to a state of coexistence in the laboratory and determined life-history traits for each species, important to categorize its competition strategy. Then, using monocultures we determined maximum biomass density under pulsed resource supply. These same conditions of resource supply were used with polycultures comprised of combinations of the isolated species. Our focal species were consistent of either r- or K-strategies and the biomass production achieved in monocultures depended on their efficiency to convert resources to biomass. For these species, the K-strategists were less efficient resource users. This affected biomass production in polycultures, which were characteristic of underyielding. In polycultures, K-strategists sequestered more resources than the r-strategists. This likely occurred because the intermittent periods of nutrient limitation that would have occurred just prior to the next nutrient supply pulse would have favored the K-strategists, leading to overall less efficient use of resources by the polyculture. This study provides evidence that fluctuation in resource concentrations resulting from pulsed resource supplies in aquatic ecosystems can result in phytoplankton assemblages' underyielding

    Everything is not everywhere: can marine compartments shape phytoplankton assemblages?

    Get PDF
    The idea that ‘everything is everywhere, but the environment selects' has been seminal in microbial biogeography, and marine phytoplankton is one of the prototypical groups used to illustrate this. The typical argument has been that phytoplankton is ubiquitous, but that distinct assemblages form under environmental selection. It is well established that phytoplankton assemblages vary considerably between coastal ecosystems. However, the relative roles of compartmentalization of regional seas and site-specific environmental conditions in shaping assemblage structures have not been specifically examined. We collected data from coastal embayments that fall within two different water compartments within the same regional sea and are characterized by highly localized environmental pressures. We used principal coordinates of neighbour matrices (PCNM) and asymmetric eigenvector maps (AEM) models to partition the effects that spatial structures, environmental conditions and their overlap had on the variation in assemblage composition. Our models explained a high percentage of variation in assemblage composition (59–65%) and showed that spatial structure consistent with marine compartmentalization played a more important role than local environmental conditions. At least during the study period, surface currents connecting sites within the two compartments failed to generate sufficient dispersal to offset the impact of differences due to compartmentalization. In other words, our findings suggest that, even for a prototypical cosmopolitan group, everything is not everywhere

    Genetic Introgression and the Survival of Florida Panther Kittens

    Get PDF
    Estimates of survival for the young of a species are critical for population models. These models can often be improved by determining the effects of management actions and population abundance on this demographic parameter. We used multiple sources of data collected during 1982–2008 and a live-recapture dead-recovery modeling framework to estimate and model survival of Florida panther (Puma concolor coryi) kittens (age 0–1 year). Overall, annual survival of Florida panther kittens was 0.323 ± 0.071 (SE), which was lower than estimates used in previous population models. In 1995, female pumas from Texas (P. c. stanleyana) were released into occupied panther range as part of an intentional introgression program to restore genetic variability. We found that kitten survival generally increased with degree of admixture: F1 admixed and backcrossed to Texas kittens survived better than canonical Florida panther and backcrossed to canonical kittens. Average heterozygosity positively influenced kitten and older panther survival, whereas index of panther abundance negatively influenced kitten survival. Our results provide strong evidence for the positive population-level impact of genetic introgression on Florida panthers. Our approach to integrate data from multiple sources was effective at improving robustness as well as precision of estimates of Florida panther kitten survival, and can be useful in estimating vital rates for other elusive species with sparse data

    Ancient papillomavirus-host co-speciation in Felidae

    Get PDF
    The evolutionary rate of feline papillomaviruses is inferred from the phylogenetic analysis of their hosts, providing evidence for long-term virus-host co-speciatio

    Intracardiac echocardiography to guide transseptal catheterization for radiofrequency catheter ablation of left-sided accessory pathways: two case reports

    Get PDF
    Intracardiac echocardiography (ICE) is a useful tool for guiding transseptal puncture during electrophysiological mapping and ablation procedures. Left-sided accessory pathways (LSAP) can be ablated by using two different modalities: retrograde approach through the aortic valve and transseptal approach with puncture of the fossa ovalis. We shall report two cases of LSAP where transcatheter radiofrequency ablation (TCRFA) was firstly attempted via transaortic approach with ineffective results. Subsequently, a transseptal approach under ICE guidance has been performed. During atrial septal puncture ICE was able to locate the needle tip position precisely and provided a clear visualization of the "tenting effect" on the fossa ovalis. ICE allowed a better mapping of the mitral ring and a more effective catheter ablation manipulation and tip contact which resulted in a persistent and complete ablation of the accessory pathway with a shorter time of fluoroscopic exposure. ICE-guided transseptal approach might be a promising modality for TCRFA of LSAP

    Unintended Consequences of Conservation Actions: Managing Disease in Complex Ecosystems

    Get PDF
    Infectious diseases are increasingly recognised to be a major threat to biodiversity. Disease management tools such as control of animal movements and vaccination can be used to mitigate the impact and spread of diseases in targeted species. They can reduce the risk of epidemics and in turn the risks of population decline and extinction. However, all species are embedded in communities and interactions between species can be complex, hence increasing the chance of survival of one species can have repercussions on the whole community structure. In this study, we use an example from the Serengeti ecosystem in Tanzania to explore how a vaccination campaign against Canine Distemper Virus (CDV) targeted at conserving the African lion (Panthera leo), could affect the viability of a coexisting threatened species, the cheetah (Acinonyx jubatus). Assuming that CDV plays a role in lion regulation, our results suggest that a vaccination programme, if successful, risks destabilising the simple two-species system considered, as simulations show that vaccination interventions could almost double the probability of extinction of an isolated cheetah population over the next 60 years. This work uses a simple example to illustrate how predictive modelling can be a useful tool in examining the consequence of vaccination interventions on non-target species. It also highlights the importance of carefully considering linkages between human-intervention, species viability and community structure when planning species-based conservation actions

    Three Pathogens in Sympatric Populations of Pumas, Bobcats, and Domestic Cats: Implications for Infectious Disease Transmission

    Get PDF
    Anthropogenic landscape change can lead to increased opportunities for pathogen transmission between domestic and non-domestic animals. Pumas, bobcats, and domestic cats are sympatric in many areas of North America and share many of the same pathogens, some of which are zoonotic. We analyzed bobcat, puma, and feral domestic cat samples collected from targeted geographic areas. We examined exposure to three pathogens that are taxonomically diverse (bacterial, protozoal, viral), that incorporate multiple transmission strategies (vector-borne, environmental exposure/ingestion, and direct contact), and that vary in species-specificity. Bartonella spp., Feline Immunodeficiency Virus (FIV), and Toxoplasma gondii IgG were detected in all three species with mean respective prevalence as follows: puma 16%, 41% and 75%; bobcat 31%, 22% and 43%; domestic cat 45%, 10% and 1%. Bartonella spp. were highly prevalent among domestic cats in Southern California compared to other cohort groups. Feline Immunodeficiency Virus exposure was primarily associated with species and age, and was not influenced by geographic location. Pumas were more likely to be infected with FIV than bobcats, with domestic cats having the lowest infection rate. Toxoplasma gondii seroprevalence was high in both pumas and bobcats across all sites; in contrast, few domestic cats were seropositive, despite the fact that feral, free ranging domestic cats were targeted in this study. Interestingly, a directly transmitted species-specific disease (FIV) was not associated with geographic location, while exposure to indirectly transmitted diseases – vector-borne for Bartonella spp. and ingestion of oocysts via infected prey or environmental exposure for T. gondii – varied significantly by site. Pathogens transmitted by direct contact may be more dependent upon individual behaviors and intra-specific encounters. Future studies will integrate host density, as well as landscape features, to better understand the mechanisms driving disease exposure and to predict zones of cross-species pathogen transmission among wild and domestic felids

    The Evolutionary Dynamics of the Lion Panthera leo Revealed by Host and Viral Population Genomics

    Get PDF
    The lion Panthera leo is one of the world's most charismatic carnivores and is one of Africa's key predators. Here, we used a large dataset from 357 lions comprehending 1.13 megabases of sequence data and genotypes from 22 microsatellite loci to characterize its recent evolutionary history. Patterns of molecular genetic variation in multiple maternal (mtDNA), paternal (Y-chromosome), and biparental nuclear (nDNA) genetic markers were compared with patterns of sequence and subtype variation of the lion feline immunodeficiency virus (FIVPle), a lentivirus analogous to human immunodeficiency virus (HIV). In spite of the ability of lions to disperse long distances, patterns of lion genetic diversity suggest substantial population subdivision (mtDNA ΦST = 0.92; nDNA FST = 0.18), and reduced gene flow, which, along with large differences in sero-prevalence of six distinct FIVPle subtypes among lion populations, refute the hypothesis that African lions consist of a single panmictic population. Our results suggest that extant lion populations derive from several Pleistocene refugia in East and Southern Africa (∼324,000–169,000 years ago), which expanded during the Late Pleistocene (∼100,000 years ago) into Central and North Africa and into Asia. During the Pleistocene/Holocene transition (∼14,000–7,000 years), another expansion occurred from southern refugia northwards towards East Africa, causing population interbreeding. In particular, lion and FIVPle variation affirms that the large, well-studied lion population occupying the greater Serengeti Ecosystem is derived from three distinct populations that admixed recently

    Seropositivity and Risk Factors Associated with Toxoplasma gondii Infection in Wild Birds from Spain

    Get PDF
    Toxoplasma gondii is a zoonotic intracellular protozoan parasite of worldwide distribution that infects many species of warm-blooded animals, including birds. To date, there is scant information about the seropositivity of T. gondii and the risk factors associated with T. gondii infection in wild bird populations. In the present study, T. gondii infection was evaluated on sera obtained from 1079 wild birds belonging to 56 species (including Falconiformes (n = 610), Strigiformes (n = 260), Ciconiiformes (n = 156), Gruiformes (n = 21), and other orders (n = 32), from different areas of Spain. Antibodies to T. gondii (modified agglutination test, MAT titer ≥1∶25) were found in 282 (26.1%, IC95%:23.5–28.7) of the 1079 birds. This study constitute the first extensive survey in wild birds species in Spain and reports for the first time T. gondii antibodies in the griffon vulture (Gyps fulvus), short-toed snake-eagle (Circaetus gallicus), Bonelli's eagle (Aquila fasciata), golden eagle (Aquila chrysaetos), bearded vulture (Gypaetus barbatus), osprey (Pandion haliaetus), Montagu's harrier (Circus pygargus), Western marsh-harrier (Circus aeruginosus), peregrine falcon (Falco peregrinus), long-eared owl (Asio otus), common scops owl (Otus scops), Eurasian spoonbill (Platalea leucorodia), white stork (Ciconia ciconia), grey heron (Ardea cinerea), common moorhen (Gallinula chloropus); in the International Union for Conservation of Nature (IUCN) “vulnerable” Spanish imperial eagle (Aquila adalberti), lesser kestrel (Falco naumanni) and great bustard (Otis tarda); and in the IUCN “near threatened” red kite (Milvus milvus). The highest seropositivity by species was observed in the Eurasian eagle owl (Bubo bubo) (68.1%, 98 of 144). The main risk factors associated with T. gondii seropositivity in wild birds were age and diet, with the highest exposure in older animals and in carnivorous wild birds. The results showed that T. gondii infection is widespread and can be at a high level in many wild birds in Spain, most likely related to their feeding behaviour
    corecore