329 research outputs found

    Ballistic and Diffuse Electron Transport in Nanocontacts of Magnetics

    Full text link
    The transition from the ballistic electron transport to the diffuse one is experimentally observed in the study of the magnetic phase transition in Ni nanocontacts with different sizes. It is shown that the voltage UCU_C needed for Joule heating of the near-contact region to the critical temperature does not depend on the contact size only in the diffuse mode. For the ballistic contact it increases with decrease in the nanocontact size. The reduction of the transport electron mean free path due to heating of NCs may result in change of the electron transport mode from ballistic to diffusive one.Comment: 7 pages, 2 figures accepted for the publication in JETPL (http://www.jetpletters.ac.ru). Will be published on 25 april 201

    The Next Linear Collider machine protection system

    Get PDF
    The Next Linear Collider (NLC) electron and positron beams are capable of damaging the linac accelerating structure and beamline vacuum chambers during an individual aberrant accelerator pulse. Machine protection system (MPS) considerations, outlined in this paper, have an impact on the engineering and design of most machine components downstream of the damping ring injector complex. The MPS consists of two functional levels. The first is a system that provides a benign, single bunch, low intensity, high emittance beam that will be used for commissioning and at any time that the integrity or the settings of the downstream component are in doubt. This level also provides for the smooth transition back and forth between high power operation and the benign diagnostic pilot bunch operation. The pilot bunch parameters in the main linac are estimated on the basis of the expected stress in the accelerator structure copper. Beam tests have been done at the SLAC linac to examine the behaviour of the copper at the damage stress threshold. Typical pilot beam parameters (compared with nominal) are: 10 times reduced intensity, 10 times increased horizontal emittance and 1000 times increased vertical emittance, resulting in a reduction in charge density of 105. The second level is the primary protection against a single aberrant pulse. It’s goal is to reduce the possibility that a substantial transverse field changes the trajectory of the high power beam from one pulse to the next. All devices that could produce such a field are 1) monitored by a fast response network and 2) have deliberately slowed response times. A ‘maximum allowable interpulse difference ’ is evaluated for each such device as well as the beam trajectory monitors in each interpulse period.

    Results of final focus test beam

    No full text
    International audienceThe beam experiments of Final Focus Test Beam (FFTB) started in September 1993 at SLAC, and have produced a 1.7 μm×75 nm spot of 46 GeV electron beam. A number of new techniques involving two nanometer spot-size monitors have been developed. Several beam diagnostic/tuning schemes are applied to achieve and maintain the small spot. This experiment opens the way toward the nanometer world for future linear collider

    Indexing the Pseudomonas specialized metabolome enabled the discovery of poaeamide B and the bananamides

    Get PDF
    Pseudomonads are cosmopolitan microorganisms able to produce a wide array of specialized metabolites. These molecules allow Pseudomonas to scavenge nutrients, sense population density and enhance or inhibit growth of competing microorganisms. However, these valuable metabolites are typically characterized one-molecule–one-microbe at a time, instead of being inventoried in large numbers. To index and map the diversity of molecules detected from these organisms, 260 strains of ecologically diverse origins were subjected to mass-spectrometry-based molecular networking. Molecular networking not only enables dereplication of molecules, but also sheds light on their structural relationships. Moreover, it accelerates the discovery of new molecules. Here, by indexing the Pseudomonas specialized metabolome, we report the molecular-networking-based discovery of four molecules and their evolutionary relationships: a poaeamide analogue and a molecular subfamily of cyclic lipopeptides, bananamides 1, 2 and 3. Analysis of their biosynthetic gene cluster shows that it constitutes a distinct evolutionary branch of the Pseudomonas cyclic lipopeptides. Through analysis of an additional 370 extracts of wheat-associated Pseudomonas, we demonstrate how the detailed knowledge from our reference index can be efficiently propagated to annotate complex metabolomic data from other studies, akin to the way in which newly generated genomic information can be compared to data from public databases
    corecore