895 research outputs found
Sequential stopping for high-throughput experiments
In high-throughput experiments, the sample size is typically chosen informally. Most formal sample-size calculations depend critically on prior knowledge. We propose a sequential strategy that, by updating knowledge when new data are available, depends less critically on prior assumptions. Experiments are stopped or continued based on the potential benefits in obtaining additional data. The underlying decision-theoretic framework guarantees the design to proceed in a coherent fashion. We propose intuitively appealing, easy-to-implement utility functions. As in most sequential design problems, an exact solution is prohibitive. We propose a simulation-based approximation that uses decision boundaries. We apply the method to RNA-seq, microarray, and reverse-phase protein array studies and show its potential advantages. The approach has been added to the Bioconductor package gaga
Network anomaly detection: a survey and comparative analysis of stochastic and deterministic methods
7 pages. 1 more figure than final CDC 2013 versionWe present five methods to the problem of network anomaly detection. These methods cover most of the common techniques in the anomaly detection field, including Statistical Hypothesis Tests (SHT), Support Vector Machines (SVM) and clustering analysis. We evaluate all methods in a simulated network that consists of nominal data, three flow-level anomalies and one packet-level attack. Through analyzing the results, we point out the advantages and disadvantages of each method and conclude that combining the results of the individual methods can yield improved anomaly detection results
Stabilization of the cubic phase of HfO2 by Y addition in films grown by metal organic chemical vapor deposition
Addition of yttrium in HfO2 thin films prepared on silicon by metal organic chemical vapor deposition is investigated in a wide compositional range (2.0-99.5 at. %). The cubic structure of HfO2 is stabilized for 6.5 at. %. The permittivity is maximum for yttrium content of 6.5-10 at. %; in this range, the effective permittivity, which results from the contribution of both the cubic phase and silicate phase, is of 22. These films exhibit low leakage current density (5x10(-7) A/cm(2) at -1 V for a 6.4 nm film). The cubic phase is stable upon postdeposition high temperature annealing at 900 degrees C under NH3. (c) 2006 American Institute of Physics
Heavy hole states in Germanium hut wires
Hole spins have gained considerable interest in the past few years due to
their potential for fast electrically controlled qubits. Here, we study holes
confined in Ge hut wires, a so far unexplored type of nanostructure. Low
temperature magnetotransport measurements reveal a large anisotropy between the
in-plane and out-of-plane g-factors of up to 18. Numerical simulations verify
that this large anisotropy originates from a confined wave function which is of
heavy hole character. A light hole admixture of less than 1% is estimated for
the states of lowest energy, leading to a surprisingly large reduction of the
out-of-plane g-factors. However, this tiny light hole contribution does not
influence the spin lifetimes, which are expected to be very long, even in non
isotopically purified samples
Measurement of the neutron capture cross section of the fissile isotope 235U with the CERN n_TOF Total Absorption Calorimeter and a fission tagging based on micromegas detectors
Actual and future nuclear technologies require more accurate nuclear data on the (n, gamma) cross sections and -ratios of fissile isotopes. Their measurement presents several difficulties, mainly related to the strong fission gamma-ray background competing with the weaker gamma-ray cascades used as the experimental signature of the (n,gamma) process. A specific setup has been used at the CERN n_TOF facility in 2012 for the measurement of the (n,gamma) cross section and alpha-ratios of fissile isotopes and used for the case of the 235U isotope. The setup consists in a set of micromegas fission detectors surrounding 235U samples and placed inside the segmented BaF2 Total Absorption Calorimeter.Postprint (published version
Tractable Bayesian variable selection: beyond normality
Bayesian variable selection often assumes normality, but the effects of model misspecification are not sufficiently understood. There are sound reasons behind this assumption, particularly for large p: ease of interpretation, analytical and computational convenience. More flexible frameworks exist, including semi- or non-parametric models, often at the cost of some tractability. We propose a simple extension that allows for skewness and thicker-than-normal tails but preserves tractability. It leads to easy interpretation and a log-concave likelihood that facilitates optimization and integration. We characterize asymptotically parameter estimation and Bayes factor rates, under certain model misspecification. Under suitable conditions misspecified Bayes factors induce sparsity at the same rates than under the correct model. However, the rates to detect signal change by an exponential factor, often reducing sensitivity. These deficiencies can be ameliorated by inferring the error distribution, a simple strategy that can improve inference substantially. Our work focuses on the likelihood and can be combined with any likelihood penalty or prior, but here we focus on non-local priors to induce extra sparsity and ameliorate finite-sample effects caused by misspecification. We show the importance of considering the likelihood rather than solely the prior, for Bayesian variable selection. The methodology is in R package 'mombf'
Procedural control and the proper balance between public and private interests in defamation claims
Claims in defamation involve courts in balancing of a number of interests. The Claimant’s interest in their reputation must be balanced with the Defendant’s interest in free expression. The Court’s interest in fair, efficient and proportionate adjudication must be balanced against the Claimant’s interest in vindicating their reputation. Much of the literature examining this balance has focused on the substantive law. This article seeks to consider how these interests have been balanced through procedural control mechanisms, such as summary judgment and strike out. In particular, the development of the court’s ability to strike out a claim as an abuse of process is been considered. It is argued that the ability to strike out in such cases performs an important role, but should not be used to prevent reputational vindication where this is worthwhile. Further, it is argued that whilst substantive and procedural changes may reduce the need for strike out, the courts should not remove this important tool from their toolbox
Treatment-Resistant Schizophrenia: Treatment Response and Resistance in Psychosis (TRRIP) Working Group Consensus Guidelines on Diagnosis and Terminology
OBJECTIVE:
Research and clinical translation in schizophrenia is limited by inconsistent definitions of treatment resistance and response. To address this issue, the authors evaluated current approaches and then developed consensus criteria and guidelines.
METHODS:
A systematic review of randomized antipsychotic clinical trials in treatment-resistant schizophrenia was performed, and definitions of treatment resistance were extracted. Subsequently, consensus operationalized criteria were developed through 1) a multiphase, mixed methods approach, 2) identification of key criteria via an online survey, and 3) meetings to achieve consensus.
RESULTS:
Of 2,808 studies identified, 42 met inclusion criteria. Of these, 21 studies (50%) did not provide operationalized criteria. In the remaining studies, criteria varied considerably, particularly regarding symptom severity, prior treatment duration, and antipsychotic dosage thresholds; only two studies (5%) utilized the same criteria. The consensus group identified minimum and optimal criteria, employing the following principles: 1) current symptoms of a minimum duration and severity determined by a standardized rating scale; 2) moderate or worse functional impairment; 3) prior treatment consisting of at least two different antipsychotic trials, each for a minimum duration and dosage; 4) systematic monitoring of adherence and meeting of minimum adherence criteria; 5) ideally at least one prospective treatment trial; and 6) criteria that clearly separate responsive from treatment-resistant patients.
CONCLUSIONS:
There is considerable variation in current approaches to defining treatment resistance in schizophrenia. The authors present consensus guidelines that operationalize criteria for determining and reporting treatment resistance, adequate treatment, and treatment response, providing a benchmark for research and clinical translation
- …
