515 research outputs found
Theory of the vortex matter transformations in high Tc superconductor YBCO
Flux line lattice in type II superconductors undergoes a transition into a
"disordered" phase like vortex liquid or vortex glass, due to thermal
fluctuations and random quenched disorder. We quantitatively describe the
competition between the thermal fluctuations and the disorder using the
Ginzburg -- Landau approach. The following T-H phase diagram of YBCO emerges.
There are just two distinct thermodynamical phases, the homogeneous and the
crystalline one, separated by a single first order transitions line. The line
however makes a wiggle near the experimentally claimed critical point at 12T.
The "critical point" is reinterpreted as a (noncritical) Kauzmann point in
which the latent heat vanishes and the line is parallel to the T axis. The
magnetization, the entropy and the specific heat discontinuities at melting
compare well with experiments.Comment: 4 pages 3 figure
Randomized clinical trial on epidural versus patient-controlled analgesia for laparoscopic colorectal surgery within an enhanced recovery pathway.
OBJECTIVE: To compare epidural analgesia (EDA) to patient-controlled opioid-based analgesia (PCA) in patients undergoing laparoscopic colorectal surgery.
BACKGROUND: EDA is mainstay of multimodal pain management within enhanced recovery pathways [enhanced recovery after surgery (ERAS)]. For laparoscopic colorectal resections, the benefit of epidurals remains debated. Some consider EDA as useful, whereas others perceive epidurals as unnecessary or even deleterious.
METHODS: A total of 128 patients undergoing elective laparoscopic colorectal resections were enrolled in a randomized clinical trial comparing EDA versus PCA. Primary end point was medical recovery. Overall complications, hospital stay, perioperative vasopressor requirements, and postoperative pain scores were secondary outcome measures. Analysis was performed according to the intention-to-treat principle.
RESULTS: Final analysis included 65 EDA patients and 57 PCA patients. Both groups were similar regarding baseline characteristics. Medical recovery required a median of 5 days (interquartile range [IQR], 3-7.5 days) in EDA patients and 4 days (IQR, 3-6 days) in the PCA group (P = 0.082). PCA patients had significantly less overall complications [19 (33%) vs 35 (54%); P = 0.029] but a similar hospital stay [5 days (IQR, 4-8 days) vs 7 days (IQR, 4.5-12 days); P = 0.434]. Significantly more EDA patients needed vasopressor treatment perioperatively (90% vs 74%, P = 0.018), the day of surgery (27% vs 4%, P < 0.001), and on postoperative day 1 (29% vs 4%, P < 0.001), whereas no difference in postoperative pain scores was noted.
CONCLUSIONS: Epidurals seem to slow down recovery after laparoscopic colorectal resections without adding obvious benefits. EDA can therefore not be recommended as part of ERAS pathways in laparoscopic colorectal surgery
Anomalous magnetic field dependence of the thermodynamic transition line in the isotropic superconductor (K,Ba)Bi03
Thermodynamic (specific heat, reversible magnetization, tunneling
spectroscopy) and transport measurements have been performed on high quality
(K,Ba)BiO single crystals. The temperature dependence of the magnetic field
corresponding to the onset of the specific heat anomaly presents a
clear positive curvature. is significantly smaller than the field
for which the superconducting gap vanishes but is closely related to
the irreversibility line deduced from transport data. Moreover, the temperature
dependence of the reversible magnetization present a strong deviation from the
Ginzburg--Landau theory emphasazing the peculiar nature of the superconducting
transition in this material.Comment: 4 pages, 4 figures, 28 reference
Flux Lattice Melting and Lowest Landau Level Fluctuations
We discuss the influence of lowest Landau level (LLL) fluctuations near
H_{c2}(T) on flux lattice melting in YBaCuO (YBCO). We
show that the specific heat step of the flux lattice melting transition in YBCO
single crystals can be attributed largely to the degrees of freedom associated
with LLL fluctuations. These degrees of freedom have already been shown to
account for most of the latent heat. We also show that these results are a
consequence of the correspondence between flux lattice melting and the onset of
LLL fluctuations.Comment: 4 pages, 2 embedded figure
Hall Anomaly and Vortex-Lattice Melting in Superconducting Single Crystal YBa2Cu3O7-d
Sub-nanovolt resolution longitudinal and Hall voltages are measured in an
ultra pure YBa2Cu3O7-d single crystal. The Hall anomaly and the first-order
vortex-lattice melting transition are observed simultaneously. Changes in the
dynamic behavior of the vortex solid and liquid are correlated with features of
the Hall conductivity sxy. With the magnetic field oriented at an angle from
the twin-boundaries, the Hall conductivity sharply decreases toward large
negative values at the vortex-lattice melting transition.Comment: 6 pages, 2 figures included, Postscript, to appear in Phys. Rev. Let
Precision calculation of magnetization and specific heat of vortex liquids and solids in type II superconductors
A new systematic calculation of magnetization and specific heat contributions
of vortex liquids and solids (not very close to the melting line) is presented.
We develop an optimized perturbation theory for the Ginzburg - Landau
description of thermal fluctuations effects in the vortex liquids. The
expansion is convergent in contrast to the conventional high temperature
expansion which is asymptotic. In the solid phase we calculate first two orders
which are already quite accurate. The results are in good agreement with
existing Monte Carlo simulations and experiments. Limitations of various
nonperturbative and phenomenological approaches are noted. In particular we
show that there is no exact intersection point of the magnetization curves both
in 2D and 3D.Comment: 4 pages, 3 figure
Critical-point scaling function for the specific heat of a Ginzburg-Landau superconductor
If the zero-field transition in high temperature superconductors such as
YBa_2Cu_3O_7-\delta is a critical point in the universality class of the
3-dimensional XY model, then the general theory of critical phenomena predicts
the existence of a critical region in which thermodynamic functions have a
characteristic scaling form. We report the first attempt to calculate the
universal scaling function associated with the specific heat, for which
experimental data have become available in recent years. Scaling behaviour is
extracted from a renormalization-group analysis, and the 1/N expansion is
adopted as a means of approximation. The estimated scaling function is
qualitatively similar to that observed experimentally, and also to the
lowest-Landau-level scaling function used by some authors to provide an
alternative interpretation of the same data. Unfortunately, the 1/N expansion
is not sufficiently reliable at small values of N for a quantitative fit to be
feasible.Comment: 20 pages; 4 figure
Experimental evidence for fast cluster formation of chain oxygen vacancies in YBa2Cu3O7-d being at the origin of the fishtail anomaly
We report on three different and complementary measurements, namely
magnetisation measurements, positron annihilation spectroscopy and NMR
measurements, which give evidence that the formation of oxygen vacancy clusters
is on the origin of the fishtail anomaly in YBa2Cu3O7-d. While in the case of
YBa2Cu3O7.0 the anomaly is intrinsically absent, it can be suppressed in the
optimally doped state where vacancies are present. We therefore conclude that
the single vacancies or point defects can not be responsible for this anomaly
but that clusters of oxygen vacancies are on its origin.Comment: 10 pages, 4 figures, submitted to PR
Nonlinear Hydrodynamics of Disentangled Flux-Line Liquids
In this paper we use non-Gaussian hydrodynamics to study the magnetic
response of a flux-line liquid in the mixed state of a type-II superconductor.
Both the derivation of our model, which goes beyond conventional Gaussian flux
liquid hydrodynamics, and its relationship to other approaches used in the
literature are discussed. We focus on the response to a transverse tilting
field which is controlled by the tilt modulus, c44, of the flux array. We show
that interaction effects can enhance c44 even in infinitely thick clean
materials. This enhancement can be interpreted as the appearance of a
disentangled flux-liquid fraction. In contrast to earlier work, our theory
incorporates the nonlocality of the intervortex interaction in the field
direction. This nonlocality is crucial for obtaining a nonvanishing
renormalization of the tilt modulus in the thermodynamic limit of thick
samples.Comment: 20 pages, 3 figures (submitted to PRB
Nature of the Low Field Transition in the Mixed State of High Temperature Superconductors
We have numerically studied the statics and dynamics of a model
three-dimensional vortex lattice at low magnetic fields. For the statics we use
a frustrated 3D XY model on a stacked triangular lattice. We model the dynamics
as a coupled network of overdamped resistively-shunted Josephson junctions with
Langevin noise. At low fields, there is a weakly first-order phase transition,
at which the vortex lattice melts into a line liquid. Phase coherence parallel
to the field persists until a sharp crossover, conceivably a phase transition,
near which develops at the same temperature as an infinite
vortex tangle. The calculated flux flow resistivity in various geometries near
closely resembles experiment. The local density of field induced
vortices increases sharply near , corresponding to the experimentally
observed magnetization jump. We discuss the nature of a possible transition or
crossover at (B) which is distinct from flux lattice melting.Comment: Updated references. 46 pages including low quality 25 eps figures.
Contact [email protected] or visit
http://www.physics.ohio-state.edu:80/~ryu/ for better figures and additional
movie files from simulations. To be published in Physical Review B1 01Jun9
- …
