1,669 research outputs found
Integer filling metal insulator transitions in the degenerate Hubbard model
We obtain exact numerical solutions of the degenerate Hubbard model in the
limit of large dimensions (or large lattice connectivity). Successive
Mott-Hubbard metal insulator transitions at integer fillings occur at
intermediate values of the interaction and low enough temperature in the
paramagnetic phase. The results are relevant for transition metal oxides with
partially filled narrow degenerate bands.Comment: 4 pages + 4 figures (in 5 ps-files), revte
Electronic structure of CaSrVO: a tale of two energy-scales
We investigate the electronic structure of CaSrVO using
photoemission spectroscopy. Core level spectra establish an electronic phase
separation at the surface, leading to distinctly different surface electronic
structure compared to the bulk. Analysis of the photoemission spectra of this
system allowed us to separate the surface and bulk contributions. These results
help us to understand properties related to two vastly differing energy-scales,
namely the low energy-scale of thermal excitations (~) and the
high-energy scale related to Coulomb and other electronic interactions.Comment: 4 pages and 3 figures. Europhysics Letters (appearing
The Finite Temperature Mott Transition in the Hubbard Model in Infinite Dimensions
We study the second order finite temperature Mott transition point in the
fully frustrated Hubbard model at half filling, within Dynamical Mean Field
Theory. Using quantum Monte Carlo simulations we show the existence of a finite
temperature second order critical point by explicitly demonstrating the
existence of a divergent susceptibility as well as by finding coexistence in
the low temperature phase. We determine the location of the finite temperature
Mott critical point in the (U,T) plane. Our study verifies and quantifies a
scenario for the Mott transition proposed in earlier studies (Reviews of Modern
Physics 68, 13, 1996) of this problem.Comment: 4 RevTex pages, uses epsf, 2 figure
Transport Properties of the Infinite Dimensional Hubbard Model
Results for the optical conductivity and resistivity of the Hubbard model in
infinite spatial dimensions are presented. At half filling we observe a gradual
crossover from a normal Fermi-liquid with a Drude peak at in the
optical conductivity to an insulator as a function of for temperatures
above the antiferromagnetic phase transition. When doped, the ``insulator''
becomes a Fermi-liquid with a corresponding temperature dependence of the
optical conductivity and resistivity. We find a -coefficient in the low
temperature resistivity which suggests that the carriers in the system acquire
a considerable mass-enhancement due to the strong local correlations. At high
temperatures, a crossover into a semi-metallic regime takes place.Comment: 14 page
Mott transition in the Hubbard model away from particle-hole symmetry
We solve the Dynamical Mean Field Theory equations for the Hubbard model away
from the particle-hole symmetric case using the Density Matrix Renormalization
Group method. We focus our study on the region of strong interactions and
finite doping where two solutions coexist. We obtain precise predictions for
the boundaries of the coexistence region. In addition, we demonstrate the
capabilities of this precise method by obtaining the frequency dependent
optical conductivity spectra.Comment: 4 pages, 4 figures; updated versio
Transfer of Spectral Weight in Spectroscopies of Correlated Electron Systems
We study the transfer of spectral weight in the photoemission and optical
spectra of strongly correlated electron systems. Within the LISA, that becomes
exact in the limit of large lattice coordination, we consider and compare two
models of correlated electrons, the Hubbard model and the periodic Anderson
model. The results are discussed in regard of recent experiments. In the
Hubbard model, we predict an anomalous enhancement optical spectral weight as a
function of temperature in the correlated metallic state which is in
qualitative agreement with optical measurements in . We argue that
anomalies observed in the spectroscopy of the metal are connected to the
proximity to a crossover region in the phase diagram of the model. In the
insulating phase, we obtain an excellent agreement with the experimental data
and present a detailed discussion on the role of magnetic frustration by
studying the resolved single particle spectra. The results for the periodic
Anderson model are discussed in connection to recent experimental data of the
Kondo insulators and . The model can successfully explain
the different energy scales that are associated to the thermal filling of the
optical gap, which we also relate to corresponding changes in the density of
states. The temperature dependence of the optical sum rule is obtained and its
relevance for the interpretation of the experimental data discussed. Finally,
we argue that the large scattering rate measured in Kondo insulators cannot be
described by the periodic Anderson model.Comment: 19 pages + 29 figures. Submitted to PR
Melting transition of an Ising glass driven by magnetic field
The quantum critical behavior of the Ising glass in a magnetic field is
investigated. We focus on the spin glass to paramagnet transition of the
transverse degrees of freedom in the presence of finite longitudinal field. We
use two complementary techniques, the Landau theory close to the T=0 transition
and the exact diagonalization method for finite systems. This allows us to
estimate the size of the critical region and characterize various crossover
regimes. An unexpectedly small energy scale on the disordered side of the
critical line is found, and its possible relevance to experiments on metallic
glasses is briefly discussed.Comment: 4 pages, 3 figure
- …
