443 research outputs found
The MgSiO_3 system at high pressure: Thermodynamic properties of perovskite, postperovskite, and melt from global inversion of shock and static compression data
We present new equation-of-state (EoS) data acquired by shock loading to pressures up to 245 GPa on both low-density samples (MgSiO_3 glass) and high-density, polycrystalline aggregates (MgSiO_3 perovskite + majorite). The latter samples were synthesized using a large-volume press. Modeling indicates that these materials transform to perovskite, postperovskite, and/or melt with increasing pressure on their Hugoniots. We fit our results together with existing P-V-T data from dynamic and static compression experiments to constrain the thermal EoS for the three phases, all of which are of fundamental importance to the dynamics of the lower mantle. The EoS for perovskite and postperovskite are well described with third-order Birch-Murnaghan isentropes, offset with a Mie-Grüneisen-Debye formulation for thermal pressure. The addition of shock data helps to distinguish among discrepant static studies of perovskite, and for postperovskite, constrain a value of K' significantly larger than 4. For the melt, we define for the first time a single EoS that fits experimental data from ambient pressure to 230 GPa; the best fit requires a fourth-order isentrope. We also provide a new EoS for Mg_2SiO_4 liquid, calculated in a similar manner. The Grüneisen parameters of the solid phases decrease with pressure, whereas those of the melts increase, consistent with previous shock wave experiments as well as molecular dynamics simulations. We discuss implications of our modeling for thermal expansion in the lower mantle, stabilization of ultra-low-velocity zones associated with melting at the core-mantle boundary, and crystallization of a terrestrial magma ocean
The Effects of Disequilibrium and Deformation on the Mineralogical Evolution of Quartz Diorite During Metamorphism in the Eclogite Facies
In the Sesia Zone, Western Alps, a large volume of orthogneiss formed as a result of eclogite fades metamorphism and deformation of quartz diorite during early Alpine underthrusting and subduction. Rare lenses of undeformed metaquartz diorite, preserved within the orthogneiss, represent an early stage in the evolution of this latter rock type. The metamorphic and microstructural evolution of the orthogneiss in the eclogite fades has been reconstructed from studies of gradational contacts between undeformed and strongly deformed rocks. High pressure transformations of the original igneous plagioclase + biotite + quartz assemblage to jadeitic pyroxene (Jd0.95 -0.85 + zoisite + quartz + garnet + 2 muscovites developed prior to deformation. Slow intergranular diffusion resulted in a state of disequilibrium between small textural domains in the metaquartz diorite. The compositions of the phases of the undeformed metaquartz diorite do not reflect the bulk rock composition, but were controlled by their position relative to reactant phases. The jadeitic pyroxenes, for example, formed in localized domains which originally consisted of sodic plagioclase whereas omphacite was the equilibrium pyroxene for the bulk rock composition. Mineralogical changes which occurred during subsequent deformation of the metaquartz diorite are interpreted as resulting from a progressive enlargement of equilibrium domains and the partial equilibration of mineral compositions to the bulk rock composition rather than from changes in pressure and temperature. Initially during high-strain deformation, fine-grained aggregates of jadeitic pyroxene + quartz + zoisite (originally pseudomorphing plagioclase) are inferred to have deformed by a mechanism of grain boundary sliding accommodated by diffusive mass transfer. Muscovite and garnet compositions homogenized during the deformation but due to slow intracrystalline diffusion, pyroxene compositions (Jd0.95 -0.80) remained metastable. The coarsening of pyroxene eventually terminated deformation by grain boundary sliding and this mineral subsequently deformed by intracrystalline plastidty. This latter process was accompanied by and perhaps catalysed a change in pyroxene composition from metastable jadeite towards omphacite by a reaction involving the resorption of garnet and the nucleation and growth of paragonite. The resulting orthogneiss consists of quartz + omphadte + garnet + phengite + paragonite + zoisite. The rock is characterized by a broad range of pyroxene compositions (Jd0.8 -0.5) due to the incomplete equilibration of this mineral to the bulk rock composition and a lack of Fe-Mg exchange equilibrium between pyroxene and garnet. However, in contrast to the undeformed metaquartz diorite, there are no obvious textural indications of disequilibrium between phases in the orthogneis
The Dynamics of Silica Melts under High Pressure: Mode-Coupling Theory Results
The high-pressure dynamics of a computer-modeled silica melt is studied in
the framework of the mode-coupling theory of the glass transition (MCT) using
static-structure input from molecular-dynamics (MD) computer simulation. The
theory reproduces the experimentally known viscosity minimum (diffusivity
maximum) as a function of density or pressure and explains it in terms of a
corresponding minimum in its critical temperature. This minimum arises from a
gradual change in the equilibrium static structure which shifts from being
dominated by tetrahedral ordering to showing the cageing known from
high-density liquids. The theory is in qualitative agreement with computer
simulation results.Comment: Presented at ESF EW Glassy Liquids under Pressure, to be published in
Journal of Physic
Corrosion-Prevention Capabilities of a Water-Borne, Silicone-Based, Primerless Coating
Comparative tests have been performed to evaluate the corrosion-prevention capabilities of an experimental paint of the type described in Water-Borne, Silicone-Based, Primerless Paints, NASA Tech Briefs, Vol. 26, No. 11 (November 2002), page 30. To recapitulate: these paints contain relatively small amounts of volatile organic solvents and were developed as substitutes for traditional anticorrosion paints that contain large amounts of such solvents. An additional desirable feature of these paints is that they can be applied without need for prior application of primers to ensure adhesion. The test specimens included panels of cold-rolled steel, stainless steel 316, and aluminum 2024-T3. Some panels of each of these alloys were left bare and some were coated with the experimental water-borne, silicone-based, primerless paint. In addition, some panels of aluminum 2024-T3 and some panels of a fourth alloy (stainless steel 304) were coated with a commercial solvent-borne paint containing aluminum and zinc flakes in a nitrile rubber matrix. In the tests, the specimens were immersed in an aerated 3.5-weight-percent aqueous solution of NaCl for 168 hours. At intervals of 24 hours, the specimens were characterized by electrochemical impedance spectroscopy (EIS) and measurements of corrosion potentials. The specimens were also observed visually. As indicated by photographs of specimens taken after the 168-hour immersion (see figure), the experimental primerless silicone paint was effective in preventing corrosion of stainless steel 316, but failed to protect aluminum 2024-T3 and cold-rolled steel. The degree of failure was greater in the case of the cold-rolled steel. On the basis of visual observations, EIS, and corrosion- potential measurements, it was concluded that the commercial aluminum and zinc-filled nitrile rubber coating affords superior corrosion protection to aluminum 2024-T3 and is somewhat less effective in protecting stainless steel 304
The NAtional randomised controlled Trial of Tonsillectomy IN Adults (NATTINA) : a clinical and cost-effectiveness study: study protocol for a randomised control trial
This project is funded by the National Institute for Health Research (NIHR) Health Technology Assessment (HTA) Programme (project number 12/146/06).BACKGROUND: The role of tonsillectomy in the management of adult tonsillitis remains uncertain and UK regional variation in tonsillectomy rates persists. Patients, doctors and health policy makers wish to know the costs and benefits of tonsillectomy against conservative management and whether therapy can be better targeted to maximise benefits and minimise risks of surgery, hence maximising cost-effective use of resources. NATTINA incorporates the first attempt to map current NHS referral criteria against other metrics of tonsil disease severity. METHODS/DESIGN: A UK multi-centre, randomised, controlled trial for adults with recurrent tonsillitis to compare the clinical and cost-effectiveness of tonsillectomy versus conservative management. An initial feasibility study comprises qualitative interviews to investigate the practicality of the protocol, including willingness to randomise and be randomised. Approximately 20 otolaryngology staff, 10 GPs and 15 ENT patients will be recruited over 5 months in all 9 proposed main trial participating sites. A 6-month internal pilot will then recruit 72 patients across 6 of the 9 sites. Participants will be adults with recurrent acute tonsillitis referred by a GP to secondary care. Randomisation between tonsillectomy and conservative management will be according to a blocked allocation method in a 1:1 ratio stratified by centre and baseline disease severity. If the pilot is successful, the main trial will recruit a further 528 patients over 18 months in all 9 participating sites. All participants will be followed up for a total of 24 months, throughout which both primary and secondary outcome data will be collected. The primary outcome is the number of sore throat days experienced over the 24-month follow-up. The pilot and main trials include an embedded qualitative process evaluation. DISCUSSION: NATTINA is designed to evaluate the relative effectiveness and efficiency of tonsillectomy versus conservative management in patients with recurrent sore throat who are eligible for surgery. Most adult tonsil disease and surgery has an impact on economically active age groups, with individual and societal costs through loss of earnings and productivity. Avoidance of unnecessary operations and prioritisation of those individuals likely to gain most from tonsillectomy would reduce costs to the NHS and society. TRIAL REGISTRATION: ISRCTN55284102, Date of Registration: 4 August 2014.Publisher PDFPeer reviewe
Synthesis of Alkaline Earth Diazenides MAEN2 (MAE = Ca, Sr, Ba) by Controlled Thermal Decomposition of Azides under High Pressure
The alkaline earth diazenides MAEN2 with MAE = Ca, Sr and Ba were synthesized by a novel synthetic approach, namely, a controlled decomposition of the corresponding azides in a multianvil press at highpressure/ high-temperature conditions. The crystal structure of hitherto unknown calcium diazenide (space group I4/mmm (no. 139), a = 3.5747(6) Å, c = 5.9844(9) Å, Z = 2, wRp = 0.078) was solved and refined on the basis of powder X-ray diffraction data as well as that of SrN2 and BaN2. Accordingly, CaN2 is isotypic with SrN2 (space group I4/mmm (no. 139), a = 3.8054(2) Å, c = 6.8961(4) Å, Z = 2, wRp = 0.057) and the corresponding alkaline earth acetylenides (MAEC2) crystallizing in a tetragonally distorted NaCl structure type. In accordance with literature data, BaN2 adopts a more distorted structure in space group C2/c (no. 15) with a = 7.1608(4) Å, b = 4.3776(3) Å, c = 7.2188(4) Å, β = 104.9679(33)°, Z = 4 and wRp = 0.049). The N−N bond lengths of 1.202(4) Å in CaN2 (SrN2 1.239(4) Å, BaN2 1.23(2) Å) correspond well with a double-bonded dinitrogen unit confirming a diazenide ion [N2]2−. Temperature-dependent in situ powder X-ray diffractometry of the three alkaline earth diazenides resulted in formation of the corresponding subnitrides MAE2N (MAE = Ca, Sr, Ba) at higher temperatures. FTIR spectroscopy revealed a band at about 1380 cm−1 assigned to the N−N stretching vibration of the diazenide unit. Electronic structure calculations support the metallic character of alkaline earth diazenides
Nickel and helium evidence for melt above the core–mantle boundary
High ^(3)He/^(4)He ratios in some basalts have generally been interpreted as originating in an incompletely degassed lower-mantle source. This helium source may have been isolated at the core–mantle boundary region since Earth’s accretion. Alternatively, it may have taken part in whole-mantle convection and crust production over the age of the Earth; if so, it is now either a primitive refugium at the core–mantle boundary or is distributed throughout the lower mantle. Here we constrain the problem using lavas from Baffin Island, West Greenland, the Ontong Java Plateau, Isla Gorgona and Fernandina (Galapagos). Olivine phenocryst compositions show that these lavas originated from a peridotite source that was about 20 per cent higher in nickel content than in the modern mid-ocean-ridge basalt source. Where data are available, these lavas also have high ^(3)He/^(4)He. We propose that a less-degassed nickel-rich source formed by core–mantle interaction during the crystallization of a melt-rich layer or basal magma ocean, and that this source continues to be sampled by mantle plumes. The spatial distribution of this source may be constrained by nickel partitioning experiments at the pressures of the core–mantle boundary
- …
