1,422 research outputs found
Deformable Registration through Learning of Context-Specific Metric Aggregation
We propose a novel weakly supervised discriminative algorithm for learning
context specific registration metrics as a linear combination of conventional
similarity measures. Conventional metrics have been extensively used over the
past two decades and therefore both their strengths and limitations are known.
The challenge is to find the optimal relative weighting (or parameters) of
different metrics forming the similarity measure of the registration algorithm.
Hand-tuning these parameters would result in sub optimal solutions and quickly
become infeasible as the number of metrics increases. Furthermore, such
hand-crafted combination can only happen at global scale (entire volume) and
therefore will not be able to account for the different tissue properties. We
propose a learning algorithm for estimating these parameters locally,
conditioned to the data semantic classes. The objective function of our
formulation is a special case of non-convex function, difference of convex
function, which we optimize using the concave convex procedure. As a proof of
concept, we show the impact of our approach on three challenging datasets for
different anatomical structures and modalities.Comment: Accepted for publication in the 8th International Workshop on Machine
Learning in Medical Imaging (MLMI 2017), in conjunction with MICCAI 201
Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network
Recently, several models based on deep neural networks have achieved great success in terms of both reconstruction accuracy and computational performance for single image super-resolution. In these methods, the low resolution (LR) input image is upscaled to the high resolution (HR) space using a single filter, commonly bicubic interpolation, before reconstruction. This means that the super-resolution (SR) operation is performed in HR space. We demonstrate that this is sub-optimal and adds computational complexity. In this paper, we present the first convolutional neural network (CNN) capable of real-time SR of 1080p videos on a single K2 GPU. To achieve this, we propose a novel CNN architecture where the feature maps are extracted in the LR space. In addition, we introduce an efficient sub-pixel convolution layer which learns an array of upscaling filters to upscale the final LR feature maps into the HR output. By doing so, we effectively replace the handcrafted bicubic filter in the SR pipeline with more complex upscaling filters specifically trained for each feature map, whilst also reducing the computational complexity of the overall SR operation. We evaluate the proposed approach using images and videos from publicly available datasets and show that it performs significantly better (+0.15dB on Images and +0.39dB on Videos) and is an order of magnitude faster than previous CNN-based methods
Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network
Recently, several models based on deep neural networks have achieved great success in terms of both reconstruction accuracy and computational performance for single image super-resolution. In these methods, the low resolution (LR) input image is upscaled to the high resolution (HR) space using a single filter, commonly bicubic interpolation, before reconstruction. This means that the super-resolution (SR) operation is performed in HR space. We demonstrate that this is sub-optimal and adds computational complexity. In this paper, we present the first convolutional neural network (CNN) capable of real-time SR of 1080p videos on a single K2 GPU. To achieve this, we propose a novel CNN architecture where the feature maps are extracted in the LR space. In addition, we introduce an efficient sub-pixel convolution layer which learns an array of upscaling filters to upscale the final LR feature maps into the HR output. By doing so, we effectively replace the handcrafted bicubic filter in the SR pipeline with more complex upscaling filters specifically trained for each feature map, whilst also reducing the computational complexity of the overall SR operation. We evaluate the proposed approach using images and videos from publicly available datasets and show that it performs significantly better (+0.15dB on Images and +0.39dB on Videos) and is an order of magnitude faster than previous CNN-based methods
Recommended from our members
Large-scale Quality Control of Cardiac Imaging in Population Studies: Application to UK Biobank
In large population studies such as the UK Biobank (UKBB), quality control of the acquired images by visual assessment is unfeasible. In this paper, we apply a recently developed fully-automated quality control pipeline for cardiac MR (CMR) images to the first 19,265 short-axis (SA) cine stacks from the UKBB. We present the results for the three estimated quality metrics (heart coverage, inter-slice motion and image contrast in the cardiac region) as well as their potential associations with factors including acquisition details and subject-related phenotypes. Up to 14.2% of the analysed SA stacks had sub-optimal coverage (i.e. missing basal and/or apical slices), however most of them were limited to the first year of acquisition. Up to 16% of the stacks were affected by noticeable inter-slice motion (i.e. average inter-slice misalignment greater than 3.4 mm). Inter-slice motion was positively correlated with weight and body surface area. Only 2.1% of the stacks had an average end-diastolic cardiac image contrast below 30% of the dynamic range. These findings will be highly valuable for both the scientists involved in UKBB CMR acquisition and for the ones who use the dataset for research purposes
Stratified decision forests for accurate anatomical landmark localization in cardiac images
Accurate localization of anatomical landmarks is an important step in medical imaging, as it provides useful prior information for subsequent image analysis and acquisition methods. It is particularly useful for initialization of automatic image analysis tools (e.g. segmentation and registration) and detection of scan planes for automated image acquisition. Landmark localization has been commonly performed using learning based approaches, such as classifier and/or regressor models. However, trained models may not generalize well in heterogeneous datasets when the images contain large differences due to size, pose and shape variations of organs. To learn more data-adaptive and patient specific models, we propose a novel stratification based training model, and demonstrate its use in a decision forest. The proposed approach does not require any additional training information compared to the standard model training procedure and can be easily integrated into any decision tree framework. The proposed method is evaluated on 1080 3D highresolution and 90 multi-stack 2D cardiac cine MR images. The experiments show that the proposed method achieves state-of-theart landmark localization accuracy and outperforms standard regression and classification based approaches. Additionally, the proposed method is used in a multi-atlas segmentation to create a fully automatic segmentation pipeline, and the results show that it achieves state-of-the-art segmentation accuracy
Prior-based Coregistration and Cosegmentation
We propose a modular and scalable framework for dense coregistration and
cosegmentation with two key characteristics: first, we substitute ground truth
data with the semantic map output of a classifier; second, we combine this
output with population deformable registration to improve both alignment and
segmentation. Our approach deforms all volumes towards consensus, taking into
account image similarities and label consistency. Our pipeline can incorporate
any classifier and similarity metric. Results on two datasets, containing
annotations of challenging brain structures, demonstrate the potential of our
method.Comment: The first two authors contributed equall
DRINet for medical image segmentation
Convolutional neural networks (CNNs) have revolutionized medical image analysis over the past few years. The UNet architecture is one of the most well-known CNN architectures for semantic segmentation and has achieved remarkable successes in many different medical image segmentation applications. The U-Net architecture consists of standard convolution layers, pooling layers, and upsampling layers. These convolution layers learn representative features of input images and construct segmentations based on the features. However, the features learned by standard convolution layers are not distinctive when the differences among different categories are subtle in terms of intensity, location, shape, and size. In this paper, we propose a novel CNN architecture, called Dense-Res-Inception Net (DRINet), which addresses this challenging problem. The proposed DRINet consists of three blocks, namely a convolutional block with dense connections, a deconvolutional block with residual Inception modules, and an unpooling block. Our proposed architecture outperforms the U-Net in three different challenging applications, namely multi-class segmentation of cerebrospinal fluid (CSF) on brain CT images, multi-organ segmentation on abdominal CT images, multi-class brain tumour segmentation on MR images
Phase Coexistence Near a Morphotropic Phase Boundary in Sm-doped BiFeO3 Films
We have investigated heteroepitaxial films of Sm-doped BiFeO3 with a
Sm-concentration near a morphotropic phase boundary. Our high-resolution
synchrotron X-ray diffraction, carried out in a temperature range of 25C to
700C, reveals substantial phase coexistence as one changes temperature to
crossover from a low-temperature PbZrO3-like phase to a high-temperature
orthorhombic phase. We also examine changes due to strain for films greater or
less than the critical thickness for misfit dislocation formation.
Particularly, we note that thicker films exhibit a substantial volume collapse
associated with the structural transition that is suppressed in strained thin
films
Self-Supervised Learning for Cardiac MR Image Segmentation by Anatomical Position Prediction
In the recent years, convolutional neural networks have transformed the field of medical image analysis due to their capacity to learn discriminative image features for a variety of classification and regression tasks. However, successfully learning these features requires a large amount of manually annotated data, which is expensive to acquire and limited by the available resources of expert image analysts. Therefore, unsupervised, weakly-supervised and self-supervised feature learning techniques receive a lot of attention, which aim to utilise the vast amount of available data, while at the same time avoid or substantially reduce the effort of manual annotation. In this paper, we propose a novel way for training a cardiac MR image segmentation network, in which features are learnt in a self-supervised manner by predicting anatomical positions. The anatomical positions serve as a supervisory signal and do not require extra manual annotation. We demonstrate that this seemingly simple task provides a strong signal for feature learning and with self-supervised learning, we achieve a high segmentation accuracy that is better than or comparable to a U-net trained from scratch, especially at a small data setting. When only five annotated subjects are available, the proposed method improves the mean Dice metric from 0.811 to 0.852 for short-axis image segmentation, compared to the baseline U-net
- …
