5,379 research outputs found

    Black hole solutions to the F4F_4-model and their orbits (I)

    Full text link
    In this paper we continue the program of the classification of nilpotent orbits using the approach developed in arXiv:1107.5986, within the study of black hole solutions in D=4 supergravities. Our goal in this work is to classify static, single center black hole solutions to a specific N=2 four dimensional "magic" model, with special K\"ahler scalar manifold Sp(6,R)/U(3){\rm Sp}(6,\mathbb{R})/{\rm U}(3), as orbits of geodesics on the pseudo-quaternionic manifold F4(4)/[SL(2,R)×Sp(6,R)]{\rm F}_{4(4)}/[{\rm SL}(2,\mathbb{R})\times {\rm Sp}(6,\mathbb{R})] with respect to the action of the isometry group F4(4){\rm F}_{4(4)}. Our analysis amounts to the classification of the orbits of the geodesic "velocity" vector with respect to the isotropy group H=SL(2,R)×Sp(6,R)H^*={\rm SL}(2,\mathbb{R})\times {\rm Sp}(6,\mathbb{R}), which include a thorough classification of the \emph{nilpotent orbits} associated with extremal solutions and reveals a richer structure than the one predicted by the βγ\beta-\gamma labels alone, based on the Kostant Sekiguchi approach. We provide a general proof of the conjecture made in arXiv:0908.1742 which states that regular single center solutions belong to orbits with coinciding βγ\beta-\gamma labels. We also prove that the reverse is not true by finding distinct orbits with the same βγ\beta-\gamma labels, which are distinguished by suitably devised tensor classifiers. Only one of these is generated by regular solutions. Since regular static solutions only occur with nilpotent degree not exceeding 3, we only discuss representatives of these orbits in terms of black hole solutions. We prove that these representatives can be found in the form of a purely dilatonic four-charge solution (the generating solution in D=3) and this allows us to identify the orbit corresponding to the regular four-dimensional metrics.Comment: 81 pages, 24 tables, new section 4.4 about the fake superpotential added, typos corrected, references added, accepted in Nuclear Physics B.

    Experimental Investigation of Sublimation of Ice at Subsonic and Supersonic Speeds and Its Relation to Heat Transfer

    Get PDF
    An experimental investigation was conducted in a 3.84- by 10-inch tunnel to determine the mass transfer by sublimation, heat transfer, and skin friction for an iced surface on a flat plate for Mach numbers of 0.4, 0.6, and 0.8 and pressure altitudes to 30,000 feet. Measurements of rates of sublimation were also made for a Mach number of 1.3 at a pressure altitude of 30,000 feet. The results show that the parameters of sublimation and heat transfer were 40 to 50 percent greater for an iced surface than was the bare-plate heat-transfer parameter. For iced surfaces of equivalent roughness, the ratio of sublimation to heat-transfer parameters was found to be 0.90. The sublimation data obtained at a Mach number of 1.3 showed no appreciable deviation from that obtained at subsonic speeds. The data obtained indicate that sublimation as a means of removing ice formations of appreciable thickness is usually too slow to be of mach value in the de-icing of aircraft at high altitudes

    First principles theory of fluctuations in vortex liquids and solids

    Full text link
    Consistent perturbation theory for thermodynamical quantities in type II superconductors in magnetic field at low temperatures is developed. It is complementary to the existing expansion valid at high temperatures. Magnetization and specific heat are calculated to two loop order and compare well to existing Monte Carlo simulations and experiments.Comment: 3 .ps fig. In press Phys. Rev.

    Why the lowest Landau level approximation works in strongly type II superconductors

    Full text link
    Higher than the lowest Landau level contributions to magnetization and specific heat of superconductors are calculated using Ginzburg - Landau equations approach. Corrections to the excitation spectrum around solution of these equations (treated perturbatively) are found. Due to symmetries of the problem leading to numerous cancellations the range of validity of the LLL approximation in mean field is much wider then a naive range and extends all the way down to H=Hc2(T)/13H = {H_{c2}(T)}/13. Moreover the contribution of higher Landau levels is significantly smaller compared to LLL than expected naively. We show that like the LLL part the lattice excitation spectrum at small quasimomenta is softer than that of usual acoustic phonons. This enhanses the effect of fluctuations. The mean field calculation extends to third order, while the fluctuation contribution due to HLL is to one loop. This complements the earlier calculation of the LLL part to two loop order.Comment: 20 pages, Latex file, three figure

    Hong-Ou-Mandel interference between independent III-V on silicon waveguide integrated lasers

    Get PDF
    The versatility of silicon photonic integrated circuits has led to a widespread usage of this platform for quantum information based applications, including Quantum Key Distribution (QKD). However, the integration of simple high repetition rate photon sources is yet to be achieved. The use of weak-coherent pulses (WCPs) could represent a viable solution. For example, Measurement Device Independent QKD (MDI-QKD) envisions the use of WCPs to distill a secret key immune to detector side channel attacks at large distances. Thus, the integration of III-V lasers on silicon waveguides is an interesting prospect for quantum photonics. Here, we report the experimental observation of Hong-Ou-Mandel interference with 46\pm 2% visibility between WCPs generated by two independent III-V on silicon waveguide integrated lasers. This quantum interference effect is at the heart of many applications, including MDI-QKD. Our work represents a substantial first step towards an implementation of MDI-QKD fully integrated in silicon, and could be beneficial for other applications such as standard QKD and novel quantum communication protocols.Comment: 5 pages, 3 figure

    The 3D printing of a polymeric electrochemical cell body and its characterisation

    No full text
    An undivided flow cell was designed and constructed using additive manufacturing technology and its mass transport characteristics were evaluated using the reduction of ferricyanide, hexacyanoferrate (III) ions at a nickel surface. The dimensionless mass transfer correlation Sh = aRebScdLee was obtained using the convective-diffusion limiting current observed in linear sweep voltammetry; this correlation compared closely with that reported in the literature from traditionally machined plane parallel rectangular flow channel reactors. The ability of 3D printer technology, aided by computational graphics, to rapidly and conveniently design, manufacture and re-design the geometrical characteristics of the flow cell ishighlighted

    A causal statistical family of dissipative divergence type fluids

    Full text link
    In this paper we investigate some properties, including causality, of a particular class of relativistic dissipative fluid theories of divergence type. This set is defined as those theories coming from a statistical description of matter, in the sense that the three tensor fields appearing in the theory can be expressed as the three first momenta of a suitable distribution function. In this set of theories the causality condition for the resulting system of hyperbolic partial differential equations is very simple and allow to identify a subclass of manifestly causal theories, which are so for all states outside equilibrium for which the theory preserves this statistical interpretation condition. This subclass includes the usual equilibrium distributions, namely Boltzmann, Bose or Fermi distributions, according to the statistics used, suitably generalized outside equilibrium. Therefore this gives a simple proof that they are causal in a neighborhood of equilibrium. We also find a bigger set of dissipative divergence type theories which are only pseudo-statistical, in the sense that the third rank tensor of the fluid theory has the symmetry and trace properties of a third momentum of an statistical distribution, but the energy-momentum tensor, while having the form of a second momentum distribution, it is so for a different distribution function. This set also contains a subclass (including the one already mentioned) of manifestly causal theories.Comment: LaTex, documentstyle{article
    corecore