594 research outputs found
Neural network modeling of memory deterioration in Alzheimer's disease
The clinical course of Alzheimer's disease (AD) is generally characterized by progressive gradual deterioration, although large clinical variability exists. Motivated by the recent quantitative reports of synaptic changes in AD, we use a neural network model to investigate how the interplay between synaptic deletion and compensation determines the pattern of memory deterioration, a clinical hallmark of AD. Within the model we show that the deterioration of memory retrieval due to synaptic deletion can be much delayed by multiplying all the remaining synaptic weights by a common factor, which keeps the average input to each neuron at the same level. This parallels the experimental observation that the total synaptic area per unit volume (TSA) is initially preserved when synaptic deletion occurs. By using different dependencies of the compensatory factor on the amount of synaptic deletion one can define various compensation strategies, which can account for the observed variation in the severity and progression rate of AD
Divergence of Dipole Sums and the Nature of Non-Lorentzian Exponentially Narrow Resonances in One-Dimensional Periodic Arrays of Nanospheres
Origin and properties of non-Lorentzian spectral lines in linear chains of
nanospheres are discussed. The lines are shown to be super-exponentially narrow
with the characteristic width proportional to exp[-C(h/a)^3] where C is a
numerical constant, h the spacing between the nanospheres in the chain and a
the sphere radius. The fine structure of these spectral lines is also
investigated.Comment: 9 pages, 4 figure
Nonlinear surface waves in left-handed materials
We study both linear and nonlinear surface waves localized at the interface
separating a left-handed medium (i.e. the medium with both negative dielectric
permittivity and negative magnetic permeability) and a conventional (or
right-handed) dielectric medium. We demonstrate that the interface can support
both TE- and TM-polarized surface waves - surface polaritons, and we study
their properties. We describe the intensity-dependent properties of nonlinear
surface waves in three different cases, i.e. when both the LH and RH media are
nonlinear and when either of the media is nonlinear. In the case when both
media are nonlinear, we find two types of nonlinear surface waves, one with the
maximum amplitude at the interface, and the other one with two humps. In the
case when one medium is nonlinear, only one type of surface wave exists, which
has the maximum electric field at the interface, unlike waves in right-handed
materials where the surface-wave maximum is usually shifted into a
self-focussing nonlinear medium. We discus the possibility of tuning the wave
group velocity in both the linear and nonlinear cases, and show that
group-velocity dispersion, which leads to pulse broadening, can be balanced by
the nonlinearity of the media, so resulting in soliton propagation.Comment: 9 pages, 10 figure
Resonant hyper-Raman scattering in spherical quantum dots
A theoretical model of resonant hyper-Raman scattering by an ensemble of
spherical semiconductor quantum dots has been developed. The electronic
intermediate states are described as Wannier-Mott excitons in the framework of
the envelope function approximation. The optical polar vibrational modes of the
nanocrystallites (vibrons) and their interaction with the electronic system are
analized with the help of a continuum model satisfying both the mechanical and
electrostatic matching conditions at the interface. An explicit expression for
the hyper-Raman scattering efficiency is derived, which is valid for incident
two-photon energy close to the exciton resonances. The dipole selection rules
for optical transitions and Fr\"ohlich-like exciton-lattice interaction are
derived: It is shown that only exciton states with total angular momentum
and vibrational modes with angular momentum contribute to the
hyper-Raman scattering process. The associated exciton energies, wavefunctions,
and vibron frequencies have been obtained for spherical CdSe zincblende-type
nanocrystals, and the corresponding hyper-Raman scattering spectrum and
resonance profile are calculated. Their dependence on the dot radius and the
influence of the size distribution on them are also discussed.Comment: 12 pages REVTeX (two columns), 2 tables, 8 figure
Plasmon oscillations in ellipsoid nanoparticles: beyond dipole approximation
The plasmon oscillations of a metallic triaxial ellipsoid nanoparticle have
been studied within the framework of the quasistatic approximation. A general
method has been proposed for finding the analytical expressions describing the
potential and frequencies of the plasmon oscillations of an arbitrary
multipolarity order. The analytical expressions have been derived for an
electric potential and plasmon oscillation frequencies of the first 24 modes.
Other higher orders plasmon modes are investigated numerically.Comment: 33 pages, 12 figure
Green's function for metamaterial superlens: Evanescent wave in the image
We develop a new method to calculate the evanescent wave, the subdivided
evanescent waves (SEWs), and the radiative wave, which can be obtained by
separating the global field of the image of metamaterial superlens. The method
is based on Green's function, and it can be applied in other linear systems.
This study could help us to investigate the effect of evanescent wave on
metamaterial superlens directly, and give us a new way to design new devices.Comment: 15 pages, 3 figure
Multi-phonon Raman scattering in semiconductor nanocrystals: importance of non-adiabatic transitions
Multi-phonon Raman scattering in semiconductor nanocrystals is treated taking
into account both adiabatic and non-adiabatic phonon-assisted optical
transitions. Because phonons of various symmetries are involved in scattering
processes, there is a considerable enhancement of intensities of multi-phonon
peaks in nanocrystal Raman spectra. Cases of strong and weak band mixing are
considered in detail. In the first case, fundamental scattering takes place via
internal electron-hole states and is participated by s- and d-phonons, while in
the second case, when the intensity of the one-phonon Raman peak is strongly
influenced by the interaction of an electron and of a hole with interface
imperfections (e. g., with trapped charge), p-phonons are most active.
Calculations of Raman scattering spectra for CdSe and PbS nanocrystals give a
good quantitative agreement with recent experimental results.Comment: 16 pages, 2 figures, E-mail addresses: [email protected],
[email protected], [email protected], accepted for publication in
Physical Review
Polariton propagation in weak confinement quantum wells
Exciton-polariton propagation in a quantum well, under centre-of-mass
quantization, is computed by a variational self-consistent microscopic theory.
The Wannier exciton envelope functions basis set is given by the simple
analytical model of ref. [1], based on pure states of the centre-of-mass wave
vector, free from fitting parameters and "ad hoc" (the so called additional
boundary conditions-ABCs) assumptions. In the present paper, the former
analytical model is implemented in order to reproduce the centre-of-mass
quantization in a large range of quantum well thicknesses (5a_B < L < inf.).
The role of the dynamical transition layer at the well/barrier interfaces is
discussed at variance of the classical Pekar's dead-layer and ABCs. The Wannier
exciton eigenstates are computed, and compared with various theoretical models
with different degrees of accuracy. Exciton-polariton transmission spectra in
large quantum wells (L>> a_B) are computed and compared with experimental
results of Schneider et al.\cite{Schneider} in high quality GaAs samples. The
sound agreement between theory and experiment allows to unambiguously assign
the exciton-polariton dips of the transmission spectrum to the pure states of
the Wannier exciton center-of-mass quantization.Comment: 15 pages, 15 figures; will appear in Phys.Rev.
Fano resonances in plasmonic core-shell particles and the Purcell effect
Despite a long history, light scattering by particles with size comparable
with the light wavelength still unveils surprising optical phenomena, and many
of them are related to the Fano effect. Originally described in the context of
atomic physics, the Fano resonance in light scattering arises from the
interference between a narrow subradiant mode and a spectrally broad radiation
line. Here, we present an overview of Fano resonances in coated spherical
scatterers within the framework of the Lorenz-Mie theory. We briefly introduce
the concept of conventional and unconventional Fano resonances in light
scattering. These resonances are associated with the interference between
electromagnetic modes excited in the particle with different or the same
multipole moment, respectively. In addition, we investigate the modification of
the spontaneous-emission rate of an optical emitter at the presence of a
plasmonic nanoshell. This modification of decay rate due to electromagnetic
environment is referred to as the Purcell effect. We analytically show that the
Purcell factor related to a dipole emitter oriented orthogonal or tangential to
the spherical surface can exhibit Fano or Lorentzian line shapes in the near
field, respectively.Comment: 28 pages, 10 figures; invited book chapter to appear in "Fano
Resonances in Optics and Microwaves: Physics and Application", Springer
Series in Optical Sciences (2018), edited by E. O. Kamenetskii, A. Sadreev,
and A. Miroshnichenk
Theory of quantum radiation observed as sonoluminescence
Sonoluminescence is explained in terms of quantum radiation by moving
interfaces between media of different polarizability. In a stationary
dielectric the zero-point fluctuations of the electromagnetic field excite
virtual two-photon states which become real under perturbation due to motion of
the dielectric. The sonoluminescent bubble is modelled as an optically empty
cavity in a homogeneous dielectric. The problem of the photon emission by a
cavity of time-dependent radius is handled in a Hamiltonian formalism which is
dealt with perturbatively up to first order in the velocity of the bubble
surface over the speed of light. A parameter-dependence of the zero-order
Hamiltonian in addition to the first-order perturbation calls for a new
perturbative method combining standard perturbation theory with an adiabatic
approximation. In this way the transition amplitude from the vacuum into a
two-photon state is obtained, and expressions for the single-photon spectrum
and the total energy radiated during one flash are given both in full and in
the short-wavelengths approximation when the bubble is larger than the
wavelengths of the emitted light. It is shown analytically that the spectral
density has the same frequency-dependence as black-body radiation; this is
purely an effect of correlated quantum fluctuations at zero temperature. The
present theory clarifies a number of hitherto unsolved problems and suggests
explanations for several more. Possible experiments that discriminate this from
other theories of sonoluminescence are proposed.Comment: Latex file, 28 pages, postscript file with 3 figs. attache
- …
